Neuroscience Laboratories
Perceptual and Cognitive Neuroscience Laboratory



Keywords:
Natural perception, Cognition, Brain Representation, Systems Neuroscience
Quantitative understanding of the human brain

Schematics of our approach. We record brain activity evoked by natural perceptual and cognitive experiences and build predictive models. By analyzing the models, we aim at understanding information processing and representation in the brain.
Members
Shinji Nishimoto (Professor) | nishimoto.shinji.fbs[at]osaka-u.ac.jp |
---|---|
Tomoyuki Namima (Assistant Professor) | namima.fbs[at]osaka-u.ac.jp |
Masahiro Yamashita (Researcher) | |
Naoto Ichikawa (Technical Staff) | |
Akiko Yamamoto (Technical Staff) |
You could probably reach more information of individual researchers by Research Map and researcher's search of Osaka-U.
- ※Change [at] to @
Q&A
- What is your hot research topic?
- Recent development in machine learning techniques, including deep learning and natural language processing, allow us to build more accurate predictive models of brain activity. Using such technologies, we aim to acquire new quantitative knowledge and interpretations on information processing and representation in the brain.
- What kind of background do your lab members have?
- Our research members (FBS/NICT) have diverse backgrounds, including biophysics, neurophysiology, computer science, psychology, and art.
- Do you collaborate with other institutions and universities?
- We are collaborating with NICT CiNet (close relation with Osaka University CiNet), University of Tokyo (JST ERATO/Mirai Program), and other research institutes.
Research Highlights
Publications (Research Articles, Reviews, Books)
2024
High-density recording reveals sparse clusters (but not columns) for shape and texture encoding in macaque V4
Journal of Neuroscience 45:e1893232024 2024 (PMID:39562041 DOI:10.1523/JNEUROSCI.1893-23.2024)
Unveiling Multi-level and Multi-modal Semantic Representations in the Human Brain using Large Language Models
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP) 20313-20338 2024 ( DOI:10.18653/v1/2024.emnlp-main.1133)
Homogenization of word relationships in schizophrenia: Topological analysis of cortical semantic representations
Psychiatry and Clinical Neurosciences 78(11):687-695 2024 (PMID:39194166 DOI:10.1111/pcn.13727)
Text and image generation from intracranial electroencephalography using an embedding space for text and images
Journal of Neural Engineering 21:036019 2024 (PMID:38648781 DOI:10.1088/1741-2552/ad417a)
Semantic context-dependent neural representations of odors in the human piriform cortex revealed by 7T MRI
Human Brain Mapping 45:e26681 2024 (PMID:38656060 DOI:10.1002/hbm.26681)
Mental image reconstruction from human brain activity: Neural decoding of mental imagery via deep neural network-based Bayesian estimation
Neural Networks 170:349-363 2024 (PMID:38016230 DOI:10.1016/j.neunet.2023.11.024)
2023
Inserting a Neuropixels probe into awake monkey cortex: two probes, two methods
Journal of Neuroscience Methods 402:110016 2023 (PMID:37995854 DOI:10.1016/j.jneumeth.2023.110016)
Artificial neural network modelling of the neural population code underlying mathematical operations
NeuroImage 270:119980 2023 (PMID:36848969 DOI:10.1016/j.neuroimage.2023.119980)
High-resolution image reconstruction with latent diffusion models from human brain activity
The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2023:14453-14463 2023 ( DOI:10.1109/CVPR52729.2023.01389)
Quantitative modelling demonstrates format-invariant representations of mathematical problems in the brain
European Journal of Neuroscience 57(6):1003-1017 2023 (PMID:36710081 DOI:10.1111/ejn.15925)
Disorganization of Semantic Brain Networks in Schizophrenia Revealed by fMRI
Schizophrenia Bulletin sbac157 2023 (PMID:36542452 DOI:10.1093/schbul/sbac157)
2022
Representations and decodability of diverse cognitive functions are preserved across the human cortex, cerebellum, and subcortex
Communications Biology 5(1):1245 2022 (PMID:36376490 DOI:10.1038/s42003-022-04221-y)
What can we experience and report on a rapidly presented image? Intersubjective measures of specificity of freely reported contents of consciousness
F1000Research 11:69 2022 (PMID:36176545 DOI:10.12688/f1000research.75364.2)
Relationship between nuclei-specific amygdala connectivity and mental health dimensions in humans
Nature Human Behaviour 2022 (PMID:36138220 DOI:10.1038/s41562-022-01434-3)
Brain networks are decoupled from external stimuli during internal cognition
Neuroimage 256:119230 2022 (PMID:35460919 DOI:10.1016/j.neuroimage.2022.119230)
Voluntary control of semantic neural representations by imagery with conflicting visual stimulation
Communications Biology 5(1):214 2022 (PMID:35304588 DOI:10.1038/s42003-022-03137-x)
Processing of visual statistics of naturalistic videos in macaque visual areas V1 and V4
Brain Structure and Function 227(4):1385-1403 2022 (PMID:35286478 DOI:10.1007/s00429-022-02468-z)
Music genre neuroimaging dataset
Data in Brief 40:107675 2022 (PMID:34917714 DOI:10.1016/j.dib.2021.107675)
2021
Multiple states in ongoing neural activity in the rat visual cortex.
PLoS One 16(8):e0256791 2021 (PMID:34437630 DOI:10.1371/journal.pone.0256791)
Reduction of Information Collection Cost for Inferring Brain Model Relations From Profile Information Using Machine Learning
IEEE Transactions on Systems, Man, and Cybernetics: Systems 2021 ( DOI:10.1109/TSMC.2021.3074069)
Behavioral correlates of cortical semantic representations modeled by word vectors.
PLoS Computational Biology 17(6):e1009138 2021 (PMID:34161315 DOI:10.1371/journal.pcbi.1009138)
Convergence of Modality Invariance and Attention Selectivity in the Cortical Semantic Circuit.
Cerebral Cortex bhab125 2021 (PMID:33999141 DOI:10.1093/cercor/bhab125)
Expert Programmers Have Fine-Tuned Cortical Representations of Source Code.
eNeuro 8(1):ENEURO.0405-20.2020 2021 (PMID:33318072 DOI:10.1523/ENEURO.0405-20.2020)
Correspondence of categorical and feature-based representations of music in the human brain.
Brain and Behavior 11(1):e01936 2021 (PMID:33164348 DOI:10.1002/brb3.1936)
2020
Distinct dimensions of emotion in the human brain and their representation on the cortical surface.
Neuroimage 222:117258 2020 (PMID:32798681 DOI:10.1016/j.neuroimage.2020.117258)
Brain-Mediated Transfer Learning of Convolutional Neural Networks.
Proceedings of the AAAI Conference on Artificial Intelligence 34:5281-5288 2020 ( DOI:10.1609/aaai.v34i04.5974)
Quantitative models reveal the organization of diverse cognitive functions in the brain.
Nature Communications 11(1):1142 2020 (PMID:32123178 DOI:10.1038/s41467-020-14913-w)
Our ideal candidate (as a graduate student)
We are looking for a highly motivated person to work on our research topics as our lab members.
Contact
Perceptual and Cognitive Neuroscience Laboratory, Graduate School of Frontier Biosciences, Osaka University,
1-4 Yamadaoka, Suita, Osaka 565-0871 Japan.
E-mail: nishimoto.shinji.fbs[at]osaka-u.ac.jp (Prof. NISHIMOTO Shinji)
- ※Change [at] to @