Research Alliance Laboratories
JEOL YOKOGUSHI Research Alliance Laboratories

Keywords:
Cryo-electron microscopy, Supramolecular three-dimensional structure, Flagellar motor, Protein transport, Muscle contraction, Nano-machine
Development of structural biosciences by electron cryomicroscopy
Cell motility and protein export are basic cellular activities driven by intricate mechanisms of self-assembling macromolecular nanomachines by their conformational switching, force generation and energy transduction. These dynamic nanomachines are built up with individual atoms as functional parts and therefore work at very high precision and even at an energy level of thermal noise. We develop techniques of electron cryomicroscopy to analyze the structures and dynamics of these nanomachines to unravel their basic mechanisms, which will hopefully lead to bionanotechnology applications, such as design of new drugs and useful nanodevices.

(Left) Many bacteria move by rotating flagella as helical propellers with rotary motors at their base at around 20,000 rpm. The flagella grow at the distal tip by self-assembly of proteins translocated there by the flagellar protein export apparatus. (Right) Electron cryomicroscopy is becoming a powerful tool for biological sciences as it can visualize the 3D structures and conformational changes of macromolecular nanomachines, such as flagella and actin filaments, in their functional forms without crystallization.
Members
Keiichi Namba (Specially Appointed Professor) | namba.keiichi.fbs[at]osaka-u.ac.jp |
---|---|
Miki Kinoshita (Specially Appointed Assistant Professo) | kinoshita.miki.fbs[at]osaka-u.ac.jp |
Kazuki Kasai (Specially Appointed Researcher) | |
Tomoko Miyata (Guest Associate Professor) | t.miyata.fbs[at]osaka-u.ac.jp |
Fumiaki Makino (Guest Associate Professor) | |
Kana Moriya (Guest Researcher) | |
Yasuyo Abe (Technical Staff) | |
Chie Yamada (Technical Staff) | |
Yoshie Kushima (Technical Staff) | |
Reiko Yamauchi (Temporary Technical Staff) |
You could probably reach more information of individual researchers by Research Map and researcher's search of Osaka-U.
- ※Change [at] to @
Q&A
- What are the findings of NAMBA Protonic Nanomachine Project (ERATO)?
- https://www.fbs.osaka-u.ac.jp/labs/namba/npn/index.html
Research Highlights
論文、総説、著書
2025
Structural basis for assembly and function of the Salmonella flagellar MS-ring with three different symmetries.
Commun. Biol. 8, 61 2025 ( DOI:10.1038/s42003-025-07485-2)
2024
Structure and dynamics of the bacterial flagellar motor complex.
Biomolecules 14(12) 2024 ( DOI:10.3390/biom14121488)
Structural analysis of S-ring composed of FliFG fusion proteins in marine Vibrio polar flagellar motor.
mBio 15, 10 2024 (PMID:39240115 DOI:10.1128/mbio.01261-24)
Structure-based validation of recombinant light-harvesting complex II.
PNAS Nexus 3, pgae405 2024 (PMID:39346626 DOI:10.1093/pnasnexus/pgae405)
Helical swimming motion driven by coordinated rotation of flagellar apparatus in marine bacterial cells.
JBSE in press 2024 ( DOI:10.1299/jbse.24-00284)
From monomers to oligomers: structural mechanisms of receptor-triggered MyD88 assembly in innate immune signaling.
bioRxiv 2024 ( DOI:10.1101/2024.09.13.612588)
Salmonella Typhimurium exploits host polyamines for assembly of the type 3 secretion machinery.
PLOS Biol. 22(8), e3002731 2024 (PMID:39102375 DOI:10.1371/jornal.pbio.3002731)
Molecular Mechanism of pH-Induced Protrusion Configuration Switching in Piscine Betanodavirus Implies a Novel Antiviral Strategy
ACS Infectious Diseases 10, 3304-3319 2024 (PMID:39087906 DOI:10.1021/acsinfecdis.4c00407)
Structural basis for the interaction between the bacterial cell division proteins FtsZ and ZapA.
bioRxiv 2024 ( DOI:10.1101/2024.07.18.604045)
Use of phase plate cryo-EM reveals conformation diversity of therapeutic IgG with 20kDa Fab fragment resolved below 6A.
Sci. Rep. 14, 14079 2024 (PMID:38890341 DOI:10.1038/s41598-024-62045-8)
Versatile biaryls and fused aromatics through oxidative coupling of hydroquinones with (hetero)arenes.
ChemistrySelect 9, e202400647 2024 ( DOI:10.1002/slct.202400647)
Structural and electrochemical elucidation of biocatalytic mechanisms in direct electron transfer-type D-fructose dehydrogenase.
Electrochimica Acta 490, 144271 2024 ( DOI:10.1016/j.electacta.2024.144271)
FliH and FliI help FlhA bring strict order to flagellar protein export in Salmonella.
Commun. Biol. 7, 366 2024 (PMID:38531947 DOI:10.1038/s42003-024-06081-0)
Characterization of a neutralizing antibody that recognizes a loop region adjacent to the receptor-binding interface of the SARS-CoV-2 spike receptor-binding domain.
Micribiol. Spectr. 12, 4, e0365523 2024 (PMID:38415660 DOI:10.1128/spectrum.03655-23)
2023
Flagella.
Molecular Medical Biology, Third Edition 97-126 2023
Essential insight of direct electron transfer-type Bioelectrocataly-sis by Membrane-bound D-fructose dehydrogenase with structural bioelectrochemistry.
ACS Catalysis 13, 13828-13837 2023 ( DOI:10.1021/acscatal.3c03769)
Development of a 1:1-binding biparatopic anti-TNFR2 antagonist by reducing signaling activity through epitope selection.
Commun. Biol. 6, 987 2023 (PMID:37758868 DOI:10.1038/s42003-023-05326-8)
Frontiers of microbial movement research.
Biophys. Physicobiol. 20, e200033 2023 (PMID:38124794 DOI:10.2142/biophysico.bppb-v20.0033)
Structure, assembly, and function of flagella responsible for bacterial locomotion.
Eco. Sal. Plus in press 2023 (PMID:37260402 DOI:10.1128/ecosalplus.esp-0011-2023)
Structures of a FtsZ single protofilament and a double-helical tube in complex with a monobody.
Nat. Commun. 14, 4073 2023 (PMID:37429870 DOI:10.1038/s41467-023-39807-5 )
Experimental and Theoretical Insights into Bienzymatic Cascade for Mediatorless Bioelectrochemical Ethanol Oxidation with Alcohol and Aldehyde Dehydrogenases.
ACS Catalysis 13, 7955-7965 2023 ( DOI:10.1021/acscatal.3c01962)
Structural and antibacterial characterization of a new benzamide FtsZ inhibitor with superior bactericidal activity and in vivo efficacy against multidrug-resistant Staphylococcus aureus.
ACS Chem. Biol. 18, 629-642 2023 (PMID:36854145 DOI:10.1021/acschembio.2c0093)
High-Resolution Rotation Assay of the Bacterial Flagellar Motor Near Zero Loads Using a Mutant Having a Rod-Like Straight Hook.
Methods in Molecular Biology 2646:125-131 2023 (PMID:36842111 DOI:10.1007/978-1-0716-3060-0_11)
Measurements of the Ion Channel Activity of the Transmembrane Stator Complex in the Bacterial Flagellar Motor
Methods in Molecular Biology 2646:83-94 2023 (PMID:36842108 DOI:10.1007/978-1-0716-3060-0_8)
Purification and CryoEM Image Analysis of the Bacterial Flagellar Filament.
Methods in Molecular Biology 2646:43-53 2023 (PMID:36842105 DOI:10.1007/978-1-0716-3060-0_5)
Purification of the Transmembrane Polypeptide Channel Complex of the Salmonella Flagellar Type III Secretion System
Methods in Molecular Biology 2646:3-15 2023 (PMID:36842101 DOI:10.1007/978-1-0716-3060-0_1)
Bacterial and Archaeal Motility - Methods and Protocols
Methods in Molecular Biology Springer Nature vol.2646 2023 ( DOI:10.1007/978-1-0716-3060-0)
Loss of flagella-related genes enables a nonflagellated, fungal-predating bacterium to strengthen the synthesis of an antifungal weapon.
Microbiol. Spectr. 14;11(1):e0414922 2023 (PMID:36629418 DOI:10.1128/spectrum.04149-22)
Epoxidized graphene grid for high-throughput high-resolution cryoEM structural analysis.
Scientific Reports 13, 2279 2023 (PMID:36755111 DOI:10.1038/s41598-023-29396-0)
The cryo-EM structure of the CENP-A nucleosome in complex with ggKNL2.
EMBO Journal 42, e111965 2023 (PMID:36744604 DOI:10.15252/embj.2022111965)
Filamentous structures in the cell envelope are associated with bacteroidetes gliding machinery.
Commun. Biol. 6, 94 2023 (PMID:36690840 DOI:10.1038/s42003-023-04472-3 )
2022
Isolation and structure of the fibril protein, a major component of the internal ribbon for Spiroplasma swimming.
Front. Microbiol. 13, 1004601 2022 (PMID:36274716 DOI:10.3389/fmicb.2022.1004601 )
Human antibody recognition and neutralization mode on the NTD and RBD domains of SARS-CoV-2 spike protein.
Scientific Reports 12, 20120 2022 (PMID:35436443 DOI:1038/s41598-022-24730-4)
Activation mechanism of the bacterial flagellar dual-fuel protein export engine.
Biophys. Physicobiol. 19, e190046 2022 (PMID:36567733 DOI:10.2142/biophysico.bppb-v19.0046)
Structure of cyanobacterial photosystem I complexed with ferredoxin at 1.97 A resolution.
Commun. Biol. 12;5(1)951 2022 (PMID:36097054 DOI:10.1038/s42003-022-03926-4)
Structures of multisubunit membrane complexes with the CRYO ARM 200
Microscopy dfac037 2022 (PMID:35861182 DOI:10.1093/jmicro/dfac037)
A multi-rail structure in the cell envelope for the Bacteroidetes gliding machinery.
Research Square 2022 ( DOI:10.21203/rs.3.rs-1802191/v1)
Conserved GYXLI motif of FlhA is involved in dynamic domain motions of FlhA required for flagellar protein export.
Microbiol. Spectr. 10(4), e0111022 2022 (PMID:35876582 DOI:10.1128/spectrum.01110-22)
A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron.
Commun. Biol. 5, 669 2022 (PMID:35794202 DOI:10.1038/s42003-022-03630-3)
Multiple electron transfer pathways of tungsten-containing formate dehydrogenase in direct electron transfer-type bioelectrocatalysis.
Chem.Comm. 58, 6478-6481 2022 (PMID:35535582 DOI:10.1039/D2CC01541B)
Insight into distinct functional roles of the flagellar ATPase complex for flagellar assembly in Salmonella.
Front. Microbiol. 13, 864178 2022 (PMID:35602071 DOI:10.3389/fmicb.2022.864178)
Recent progress and future perspective of electron cryomicroscopy for structural life sciences.
Microscopy 71(S1), i3-i14 2022 (PMID:35275178 DOI:10.1093/jmicro/dfab049)
2021
Structure of the bacterial flagellar hook cap provides insights into a hook assembly mechanism.
Communications Biology 4; 1291 2021 (PMID:34785766 DOI:10.1038/s42003-021-02796-6)
Multiple roles of flagellar export chaperones for efficient and robust flagellar filament formation in Salmonella.
Frontiers in Microbiology 12; 756044 2021 (PMID:34691007 DOI:10.3389/fmicb.2021.756044)
Genetic analysis of the Salmonella FliE protein that forms the base of the flagellar axial structure.
mBio 12(5): e02392-21 2021 (PMID:34579566 DOI:10.1128/mBio.02392-21)
The structure of MgtE in the absence of magnesium provides new insights into channel gating.
PLoS Biol. 19(4): e3001231 2021 (PMID:33905418 DOI:10.1371/journal.pbio.3001231)
Chained structure of dimeric F1-like ATPase in Mycoplasma mobile gliding machinery.
mBio 12(4): e0141421 2021 (PMID:34281395 DOI:10.1128/MBIO.01414-21)
Structure of the molecular bushing of the bacterial flagellar motor.
Nat. Commun. 12, 4469 2021 (PMID:34294704 DOI:10.1038/s41467-021-24715-3)
Native flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetries.
Nat. Commun. 12, 4223 2021 (PMID:34244518 DOI:10.1038/s41467-021-24507-9)
Membrane voltage-dependent activation mechanism of the bacterial flagellar protein export apparatus.
PNAS 118 (22) e2026587118 2021 (PMID:34035173 DOI:10.1073/pnas.2026587118)
Recent advances in the bacterial flagellar motor study
Biomolecules 11, 741 2021 (PMID:34067523 DOI:10.3390/biom11050741)
The FlhA linker mediates flagellar protein export switching during flagellar assembly.
Communications Biology 4, 646 2021 (PMID:34059784 DOI:10.1038/s42003-021-02177-z)
A positive charge region of Salmonella FliI is required for ATPase formation and efficient flagellar protein export.
Communications Biology 4, 464 2021 (PMID:33846530 DOI:10.1038/s42003-021-01980-y)
The FlgN chaperone activates the Na+-driven engine of the Salmonella flagellar protein export apparatus.
Communications Biology 4, 335 2021 (PMID:33712678 DOI:10.1038/s42003-021-01865-0)
Two distinct conformations in 34 FliF subunits generate three different symmetries within the flagellar MS-ring.
mBio 12:e03199-20 2021 (PMID:33653894 DOI:10.1128/mBio.03199-20.)
Cryo-EM structure of a functional monomeric Photosystem I from Thermosynechococcus elongates reveals ‘red’ chlorophyll cluster.
Commun. Biol. 4, 304 2021 (PMID:33686186 DOI:10.1038/s42003-021-01808-9 )
Split conformation of Chaetomium thermophilum Hsp104 disaggregase.
Structure 29, 1-10 2021 (PMID:33651974 DOI:10.1016/j.str.2021.02.002)
Cryo-EM structure of the CENP-A nucleosome in complex with phosphorylated CENP-C.
EMBO Journal e105671 2021 (PMID:33463726 DOI:10.15252/embj.2020105671)
Architecture and assembly of the bacterial flagellar motor complex.
Macromolecular Protein Complexes III: Structure and Function, Subcellular Biochemistry 96: 297-321 2021 (PMID:33252734 DOI:10.1007/978-3-030-58971-4_8.)
2020
Functional divergence of flagellar type III secretion system: A case study in a non-flagellated, predatory bacterium.
Comput. Struct. Biotechnol. 18, 3368-3376 2020 ( DOI:10.1016/j.csbj.2020.10.029)
Dynamic exchange of two types of stator units in Bacillus subtilis flagellar motor in response to environmental changes.
Comput. Struct. Biotechnol. 18, 2897-2907 2020 (PMID:33163150 DOI:10.1016/j.csbj.2020.10.009)
Immunodominant proteins P1 and P40/P90 from human pathogen Mycoplasma pneumoniae.
Nat. Commun. 11, 5188 2020 (PMID:33057023 DOI:10.1038/s41467-020-18777-y)
GFP fusion to the N-terminus of MotB affects the proton channel activity of the bacterial flagellar motor in Salmonella.
Biomolecules 10, 1255 2020 (PMID:32872412 DOI:10.3390/biom10091255)
Mechanical inhibition of isolated V0 from V/A-ATPase for proton conductance.
eLife 9:e56862 2020 (PMID:32639230 DOI:10.7554/eLife.56862)
Assembly mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in Vibrio species.
J. Bacteriol. 202, e00236-20 2020 (PMID:32482724 DOI:10.1128/JB.00236-20)
The homologous components of flagellar type III protein apparatus have acquired a novel function to control twitching motility in a non-flagellated biocontrol bacterium.
Biomolecules 10, 733 2020 (PMID:32392834 DOI:10.3390/biom10050733)
Tree of motility _ A proposed history of motility systems in the tree of life.
Genes Cells 25:6_21 2020 (PMID:31957229 DOI:10.1111/gtc.12737)
Energy landscape of domain motion in glutamate dehydrogenase deduced from cryo-electron microscopy.
FEBS J. 287, 3472-3493 2020 (PMID:31976609 DOI:10.1111/febs.15224)
Direct observation of speed fluctuations of flagellar motor rotation at extremely low load close to zero.
Mol. Microbiol. 113(4):755-765 2020 (PMID:31828860 DOI:10.1111/mmi.14440)
Structural and functional comparison of Salmonella flagellar filaments composed of FljB and FliC.
Biomolecules 10, 246 2020 (PMID:32041169 DOI:10.3390/bioml0020246)
FliK-driven conformational rearrangements of FlhA and FlhB are required for export switching of the flagellar protein export apparatus.
J. Bacteriol. 202:e00637-19 2020 (PMID:31712281 DOI:10.1128/JB.00637-19)
In vitro autonomous construction of the flagellar axial structure in the inverted membrane vesicles.
Biomolecules 10, 126 2020 (PMID:31940802 DOI:10.3390/biom10010126)
Cardiac muscle thin filament structures reveal calcium regulatory mechanism.
Nat. Commun. 11, 153 2020 (PMID:31919429 DOI:10.1038/s41467-019-14008-1)
2019
Refined mechanism of Mycoplasma mobile gliding based on structure, ATPase activity, and sialic acid binding of machinery.
mBio 10:e02846-19 2019 (PMID:31874918 DOI:10.1128/mBio.02846-19)
Structure of the native supercoiled flagellar hook as a universal joint.
Nat. Commun. 10, 5295 2019 (PMID:31757961 DOI:10.1038/s41467-019-13252-9)
CryoTEM with a cold emission gun that moves structural biology into a new stage.
Microsc. microanal. 25(Suppl 2):998-999 2019 ( DOI:10.1017/S1431927619005725)
Structure of Salmonella flagellar hook reveals intermolecular domain interactions for the universal joint function.
Biomolecules 9, 462 2019 (PMID:31505847 DOI:10.3390/biom9090462)
Directional switching mechanism of the bacterial flagellar motor.
Comp. Struct. Biotechnol. J. 17:1075-1081 2019 (PMID:31452860 DOI:10.1016/j.csbj.2019.07.020)
Flagella-driven motility of bacteria.
Biomolecules 9, 279 2019 (PMID:31337100 DOI:10.3390/biom9070279)
Architecture of the Bacterial Flagellar Distal Rod and Hook of Salmonella.
Biomolecules 9, 260 2019 (PMID:31284631 DOI:10.3390/biom9070260)
Mutational analysis of the C-terminal cytoplasmic domain of FlhB, a transmembrane component of the flagellar type III protein export apparatus in Salmonella.
Genes Cells 24(6):408-421 2019 (PMID:30963674 DOI:10.1111/gtc.12684)
Structural insights into the substrate specificity switching mechanism of the type III protein export apparatus.
Structure 27(6):965-976.e6 2019 (PMID:31031200 DOI:10.1016/j.str.2019.03.017)
Novel insights into conformational rearrangements of the bacterial flagellar switch complex.
mBio 10:e00079-19 2019 (PMID:30940700 DOI:10.1128/mBio.00079-19)
2018
Complementary use of electron cryomicroscopy and X-ray crystallography: structural studies of actin and actomyosin filaments.
Integrative Structural Biology with Hybrid Methods, Advances in Experimental Medicine and Biology, Springer Nature Singapore Pte Ltd. 1105:25-42 2018 (PMID:30617822 DOI:10.1007/978-981-13-2200-6_4)
Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment.
Mol. Microbiol. 10:723-734 2018 (PMID:30069936 DOI:10.1111/mmi.14092)
In vitro reconstitution of functional type III protein export and insights into flagellar assembly.
mBio 9(3):e00988-18 2018 (PMID:29946050 DOI:10.1128/mBio.00988-18)
The mechanism of two-phase motility in the spirochete Leptospira: Swimming and crawling.
Sci. Adv. 4(5):eaar7975 2018 (PMID:29854948 DOI:10.1126/sciadv.aar7975)
Leptospiral flagellar sheath protein FcpA interacts with FlaA2 and FlaB1 in Leptospira biflexa.
PLoS One 13(4):e0194923 2018 (PMID:29634754 DOI:10.1371/journal.pone.0194923)
Hierarchical protein export mechanism of the bacterial flagellar type III protein export apparatus.
FEMS Microbiol. Lett. 365:1-9 2018 (PMID:29850796 DOI:10.1093/femsle/fny117)
Technical Development of Electron Cryomicroscopy and Contributions to Life Sciences.
JEOL NEWS 53:18-24 2018
Electron Microscopy of Motor Structure and Possible Mechanisms.
Encyclopedia of Biophysics 2018 ( DOI:10.1007/978-3-642-16712-6_196)
The bacterial flagellum.
InTechOpen 42811 2018 ( DOI:10.5772/intechopen.73277)
Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export.
Sci. Adv. 4(4):eaao7054 2018 (PMID:29707633 DOI:10.1126/sciadv.aao7054)
Effect of a clockwise-locked deletion in FliG on the FliG ring structure of the bacterial flagellar motor.
Genes Cells 23:241-247 2018 (PMID:29405551 DOI:10.1111/gtc.12565)
Evidence for the hook supercoiling mechanism of the bacterial flagellum.
Biophysics and Physicobiology 15:28-32 2018 (PMID:29607277 DOI:10.2142/biophysico.15.0_28)
Novel insights into the mechanism of well-ordered assembly of bacterial flagellar proteins in Salmonella.
Sci Rep 8(1787) 2018 (PMID:29379125 DOI:10.1038/s41598-018-20209-3)
Insight into adaptive remodeling of the rotor ring complex of the bacterial flagellar motor.
BBRC 496:12-17 2018 (PMID:29294326 DOI:10.1016/j.bbrc.2017.12.118)
A triangular loop of domain D1 of FlgE is essential for hook assembly but not for the mechanical function.
BBRC 495:1789-1794 2018 (PMID:29229393 DOI:10.1016/j.bbrc.2017.12.037)
2017
Structural differences in the bacterial flagellar motor among bacterial species.
Biophysics and Physicobiology 14:191-198 2017 (PMID:29362704 DOI:10.2142/biophysico.14.0_191)
Determination of local pH differences within living Salmonella cells by high-resolution pH imaging based on pH-sensitive GFP derivative, pHluorin(M153R).
Bio-protocol 7(1):e2529 2017 ( DOI:10.21769/BioProtoc.2529)
Na+-induced structural transition of MotPS for stator assembly of Bacillus flagellar motor.
Sci. Adv. 3(11):eaao4119 2017 (PMID:29109979 DOI:10.1126/sciadv.aao4119)
The role of a cytoplasmic loop of MotA in load-dependent assembly and disassembly dynamics of the MotA/B stator complex in the bacterial flagellar motor.
Mol. Microbiol. 106(4):646-658 2017 (PMID:28925530 DOI:10.1111/mmi.13843.)
Implications of coordinated cell-body rotations for Leptospira motility.
Blood 491:1040-1046 2017 (PMID:28780349 DOI:10.1016/j.bbrc.2017.08.007)
Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex
PLoS. Biol. 15(8):e2002281 2017 (PMID:28771466 DOI:10.1371/journal.pbio.2002281)
Stoichiometry and turnover of the stator and rotor.
The Bacterial Flagellum _ Methods and Protocols- 1593:203-213 2017 (PMID:28389956 DOI:10.1007/978-1-4939-6927-2_16)
Structural study of the bacterial flagellar basal body by electron cryomicroscopy and image analysis.
The Bacterial Flagellum _ Methods and Protocols- 1593:119-131 2017 (PMID:28389949 DOI:10.1007/978-1-4939-6927-2_9)
Fuel of the bacterial flagellar type III protein export apparatus.
The Bacterial Flagellum _ Methods and Protocols- 1593:3-16 2017 (PMID:28389941 DOI:10.1007/978-1-4939-6927-2_1)
Straight and rigid flagellar hook made by insertion of the FlgG specific sequence into FlgE.
Sci Rep 7:46723 2017 (PMID:28429800 DOI:10.1038/srep46723.)
Load- and polysaccharide-dependent activation of the Na+-type MotPS stator in the Bacillus subtilis flagellar motor.
Sci Rep 7:46081 2017 (PMID:28378843 DOI:10.1038/srep46081)
Bacterial flagella grow through an injection-diffusion mechanism.
eLife 6:e23136 2017 (PMID:28262091 DOI:10.7554/eLife.23136)
Measurements of free-swimming speed of motile Salmonella cells in liquid media.
Bio-protocol 7(1):e2093 2017 ( DOI:10.21769/BioProtoc.2093)
Bacterial intracellular sodium ion measurement using CoroNa Green.
Bio-protocol 7(1):e2092 2017 ( DOI:10.21769/BioProtoc.2092)
Identical folds used for distinct mechanical functions of the bacterial flagellar rod and hook.
Nat. Commun. 8:14276 2017 (PMID:28120828 DOI:10.1038/ncomms14276)
Structure of actomyosin rigour complex at 5.2-_ resolution and insights into the ATPase cycle mechanism
Nat. Commun. 8:13969 2017 (PMID:28067235 DOI:10.1038/ncomms13969)
2016
High-resolution pH imaging of living bacterial cell to detect local pH differences.
mBio 7(6) 2016 (PMID:27923921 DOI:10.1128/mBio.01911-16)
The architecture of the cytoplasmic region of type III secretion systems.
Sci Rep 6:33341 2016 (PMID:27686865 DOI:10.1038/srep33341)
Structural stability of flagellin subunit affects the rate of flagellin export in the absence of FliS chaperone.
Mol. Microbiol. 102(3):405-416 2016 (PMID:27461872 DOI:10.1111/mmi.13469)
The terameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium.
Sci Rep 6:31526 2016 (PMID:27531865 DOI:10.1038/srep31526)
Structural study of MPN387, an essential protein for gliding motility of a human pathogenic bacterium, Mycoplasma pneumonia.
J. Bacteriol. 198:2352-2359 2016 (PMID:27325681 DOI:10.1128/JB.00160-16)
Structural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica.
Sci Rep 6:27399 2016 (PMID:27273476 DOI:10.10.8/srep27399)
Rearrangements of α-helical structures of FlgN chaperone control the binding affinity for its cognate substrates during flagellar type III export.
Mol. Microbiol. 101:656-670 2016 (PMID:27178222 DOI:10.1111/mmi.13415)
Periodicity in attachment organelle revealed by electron cryotomography suggests conformational changes in gliding mechanism of Mycoplasma pneumoniae.
mBio 7(2):e00243-16 2016 (PMID:27073090 DOI:10.1128/mBio.00243-16)
Insight into the flagella type III export revealed by the complex structure of the type III ATPase and its regulator.
Proc. Natl. Acad. Sci. U. S. A. 113(13):3633-3638 2016 (PMID:26984495 DOI:10.1073/pnas)
Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor.
Nat. Struct. Mol. Biol. 23:197-203 2016 (PMID:26854663 DOI:10.1073/pnas)
The bacterial flagellar type III export gate complex is a dual fuel engine that can use both H+ and Na+ for flagellar protein export.
PLoS Pathog. 4;12(3):e1005495 2016 (PMID:26943926 DOI:10.1371/journal.ppat.1005495)
FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella.
MicrobiologyOpen 5(3):424-35 2016 (PMID:26916245 DOI:10.1002/mbo3.340)
Genetic analysis of revertants isolated from the rod-fragile fliF mutant of Salmonella.
Biophysics and Physicobiology 13:13-25 2016 (PMID:27924254 DOI:10.2142/biophysico.13.0_13)
NEWS
Contact
JEOL YOKOGUSHI Research Alliance Laboratories, Graduate School of Frontier Biosciences, Osaka University,
1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
TEL: +81-6-6879-4625
E-mail: keiichi[at]fbs.osaka-u.ac.jp (SA Prof. Keiichi Namba)
- ※Change [at] to @