Biophysical Dynamics Laboratories
Photophysics Laboratory



Keywords:
Electronic structure, Molecular vibration, Electron beam accelerator, Spectroscopic imaging
Investigation of the connection between life science and quantum physics
Life phenomena, such as redox and photosynthesis, and the physical properties of solids, such as magnetism and dielectric phenomena, originate from the changes in microscopic electronic structures and molecular vibrations and/or molecular movements based on quantum mechanics in materials and their interactions. Clarifying the microscopic electronic states and molecular vibrations provides us not only the information concerning the origins of the life phenomena but also the clarification of hidden functions. To visualize of the change of the electronic states and molecular vibrations, we also develop novel spectroscopic techniques using synchrotron radiation, lasers and high-brilliant electron beams. Based on the microscopic information obtained, we aim to reveal and develop novel functionalities of new biological and quantum materials.

A novel photoemission spectrometer, the Symmetry- And Momentum-Resolved electronic structure Analysis Instrument (SAMRAI) at UVSOR, a high-brilliance low-energy synchrotron radiation facility, was developed by our group.
Members
Shin-ichi Kimura (Professor) | kimura.shin-ichi.fbs[at]osaka-u.ac.jp |
---|---|
Hiroshi Watanabe (Associate Professor) | hwata.fbs[at]osaka-u.ac.jp |
Takuto Nakamura (Assistant Professor) | nakamura.takuto.fbs[at]osaka-u.ac.jp |
Sambi Yamamura (Secretary) | kimuralab-secretary[at]fbs.osaka-u.ac.jp |
You could probably find more information on individual researchers by using Research Map and researcher's search of Osaka-U.
- ※Change [at] to @
Q&A
- What is your hot research topic?
- We focus on the physical properties and basic properties of biological molecules. For example, some amino acid molecules show large nonlinear optical effects due to their high dielectric properties, and DNA molecules are one-dimensional semiconductors. Theoretically, the energy gap is expected to drastically change by changing the base sequence. Aside from these properties, we are studying substances of physical interest.
- What is your breakthrough or research progress in the last 5 years?
- Our breakthrough studies involved the direct observation of the movement of electrons and molecules by the charge transfer of photocatalyst complexes used in artificial photosynthesis with time-resolved terahertz spectroscopy, and the discovery that the metal state that appears only on a specific semiconductor surface originates from a mathematical topology. We have also developed elementally-specific electron spectroscopy as a new observation method.
- What kind of background do your lab members have?
- In our laboratory, quantum mechanics and statistical mechanics are fundamentally used, so knowledge of physics and quantum chemistry is required. We are conducting research with members with such knowledge.
- Do you collaborate with other institutions and universities?
- We are using several synchrotron radiation light sources not only in Japan and abroad. We have strong collaborations with DGIST in South Korea and MPI CPfS in Germany.
- What kind of careers do your Lab's alumni go on to?
- They have taken jobs in industrial (electrical, optical or materials) companies. Some received academic positions.
- How do you develop your research?
- Our aim is to connect quantum physics to life sciences.
Research Highlights
Publications (Research Articles, Reviews, Books)
2022
Breakdown of bulk-projected isotropy in surface electronic states of topological Kondo insulator SmB6(001)
Nat. Commun. 13, 5600 2022 ( DOI:10.1038/s41467-022-33347-0)
Recent progress in clean-surface formation of topological Kondo insulators and topological surface states observed there
Electron. Struct. 4, 033003 2022 ( DOI:10.1088/2516-1075/ac8631)
Fluctuating spin-orbital texture of Rashba-split surface states in real and reciprocal space
Phys. Rev. B 105, 235141 2022 ( DOI:10.1103/PhysRevB.105.235141)
2021
Optical study of the electronic structure of locally noncentrosymmetric CeRh2As2
Phys. Rev. B 104, 245116 2021 ( DOI:10.1103/PhysRevB.104.245116)
Bulk-sensitive spin-resolved resonant electron energy-loss spectroscopy (SR-rEELS): Observation of element- and spin-selective bulk plasmons
Rev. Sci. Instrum 92, 093103 2021 ( DOI:10.1063/5.0055435)
Optical properties in the hole-doped Ca8.5Na1.5(Pt3As8)(Fe2As2)5 single crystal
Results in Physics 27, 104468 2021 ( DOI:10.1016/j.rinp.2021.104468)
Optical evidence of local and itinerant states in Ce- and Yb-heavy-fermion compounds
Electron. Struct. 3, 024007 2021 ( DOI:10.1088/2516-1075/abffe2)
2020
Magneto-Optics of the Weyl Semimetal TaAs in the THz and IR Regions
JPS Conference Proceedings 30:011017 2020 ( DOI:10.7566/JPSCP.30.011017)
One-dimensionality of the spin-polarized surface conduction and valence bands of quasi-one-dimensional Bi chains on GaSb(110)-(2テ)
Phys. Rev. B 101, 235306 2020 ( DOI:10.1103/PhysRevB.101.235306)
2019
Giant Rashba system on a semiconductor substrate with tunable Fermi level: Bi/GaSb(110)-(2テ)
Phys. Rev. Mater. 3:126001 2019 ( DOI:10.1103/PhysRevMaterials.3.126001)
Stokes to Anti-Stokes Intensity Ratio in the Raman Scattering Spectra of Rutile TiO2
J. Phys. Soc. Jpn. 88:094706 2019 ( DOI:10.7566/JPSJ.88.094706)
Ultrafast electronic relaxation dynamics in a valence fluctuation material Sm0.83Y0.17S
Journal of Physics: Conference Series 1220:012005 2019 ( DOI:10.1088/1742-6596/1220/1/012005)
Optical and photoelectrical studies on anisotropic metal-insulator transition of RuAs
Phys. Rev. B 100:125151 2019 ( DOI:10.1103/PhysRevB.100.125151)
Photoinduced valence dynamics in EuNi2(Si0.21Ge0.79)2 studied via time-resolved x-ray absorption spectroscopy
Phys. Rev. B 100:115123 2019 ( DOI:10.1103/PhysRevB.100.115123)
Effects of finite-range interactions on the one-electron spectral properties of one-dimensional metals: Application to Bi/InSb(001)
Phys. Rev. B 100:035105 2019 ( DOI:10.1103/PhysRevB.100.035105)
Temperature dependence of the electronic structure of A-site ordered perovskite CaCu3Ti4O12: Angle-integrated and -resolved photoemission studies
Solid State Commun. 298:113648 2019 ( DOI:10.1016/j.ssc.2019.113648)
Optical evidence of the type-II Weyl semimetals MoTe2 and WTe2
Phys. Rev. B 99:195203 2019 ( DOI:10.1103/PhysRevB.99.195203)
Understanding the role of organic cations on the electronic structure of lead iodide perovskite from their UV photoemission spectra and their electronic structures calculated by DFT method
Mater. Res. Express 6:084009 2019 ( DOI:10.1088/2053-1591/ab1d3f)
Relaxation dynamics of [Re(CO)2(bpy){P(OEt)3}2](PF6) in TEOA solvent measured by time-resolved attenuated total reflection terahertz spectroscopy
Sci Rep 9(1):11772 2019 (PMID:31409913 DOI:10.1038/s41598-019-48191-4)
Non-trivial surface states of samarium hexaboride at the (111) surface
Nat. Commun. 10(1):2298 2019 (PMID:31127112 DOI:10.1038/s41467-019-10353-3)
Temperature-driven modfication of surface electronic structure on bismuth, a topological border material
Ann. N.Y. Acad. Sci. 52:254002 2019 ( DOI:10.1088/1361-6463/ab1515)
Evidence for a preformed Cooper pair model in the pseudogap spectra of a Ca10(Pt4As8)(Fe2As2)5 single crystal with a nodal superconducting gap
Sci Rep 3.14375 2019 ( DOI:10.1038/s41598-019-40528-3)
2018
Giant thermal effect of vibration modes of single-crystalline alanine
Infrared Phys. Technol. 96:7-9 2018 ( DOI:10.1016/j.infrared.2018.10.039)
Enhanced detection sensitivity of terahertz magnetic nearfield with 2 cryogenically-cooled magnetooptical sampling in terbium-gallium-garnet
Appl. Phys. Lett. 113:111103 2018 ( DOI:10.1063/1.5037521)
Giant Rashba splitting of quasi-1D surface states of Bi/InAs(110)-(2x1)
Phys. Rev. B 98:075431 2018 ( DOI:10.1103/PhysRevB.98.075431)
Temperature dependence of superconducting energy gaps in Ca9.35La0.65(Pt3As8)(Fe2As2)5 single crystal
Sci Rep 6.338888889 2018 (PMID:29872157 DOI:10.1038/s41598-018-24940-9)
Infrared Evaluation of Enantiometric Amount and Application to Racemization at the Interface between L- and D-alanines
Appl. Spectrosc. 72(7):1074-1079 2018 (PMID:29676603 DOI:10.1177/0003702818770575)
Macroscopic Magnetization Control by Symmetry Breaking of Photoinduced Spin Reorientation with Intense Terahertz Magnetic Near Field
Phys. Rev. Lett. 120(10):107202 2018 (PMID:29570344 DOI:10.1103/PhysRevLett.120.107202)
Surface electronic states of Au-induced nanowires on Ge(0 0 1)
J. Phys.-Condes. Matter 30:075001 2018 ( DOI:10.1088/1361-648X/aaa526)
2017
Near-Field spectroscopic investigation of dual-band heavy fermion metamaterials
Nat. Commun. 1.904166667 2017 (PMID:29273808 DOI:10.1038/s41467-017-02378-3)
Spin-polarized quasi-one-dimensional state with finite band gap on the Bi/InSb(001) surface
Phys. Rev. Mater. 1:064602 2017 ( DOI:10.1103/PhysRevMaterials.1.064602)
Surface electronic structure of SmB6(111)
Physica B 10(1):2298 2017 ( DOI:10.1016/j.physb.2017.09.033)
Surface state of the dual topological insulator Bi_0.91Sb_0.09(11-2)
Physica B 516:100-104 2017 ( DOI:10.1016/j.physb.2017.04.031)
High-speed 100 MHz strain monitor using fiber Bragg grating and optical filter for magnetostriction measurements under ultrahigh magnetic fields
Rev. Sci. Instrum. 88:083906 2017 (PMID:28863652 DOI:10.1063/1.4999452)
Observation of long-lived coherent spin precession in orthoferrite ErFeO3 induced by terahertz magnetic fields
Appl. Phys. Lett. 111:092401 2017 ( DOI:10.1063/1.4985035)
Optical signature of Weyl electronic structures in tantalum pnictides TaPn (Pn = P, As)
Phys. Rev. B 96:075119 2017 ( DOI:10.1103/PhysRevB.96.075119)
Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer
Nano Lett. 17(6):3493-3500 2017 (PMID:28545300 DOI:10.1021/acs.nanolett.7b00560)
Temperature dependence of Yb valence in the sub-surface of YbB12(001)
Journal of Physics: Conference Series 807:012003 2017 ( DOI:10.1088/1742-6596/807/1/012003)
Optical properties of optimally doped single-crystal Ca8.5La1.5(Pt3As8)(Fe2As2)5
Phys. Rev. B 95:094510 2017 ( DOI:10.1103/PhysRevB.95.094510)
Possible spin-charge separation of the Tomonaga-Luttinger liquid on Bi/InSb(001)
J. Electron Spectrosc. Relat. Phenom. 2017 ( DOI:10.1016/j.elspec.2017.03.005)
2016
Topological phase transition of single-crystal Bi based on empirical tight-binding calculations
New J. Phys. 18:123015 2016 ( DOI:10.1088/1367-2630/18/12/123015)
Doping Effect on the Electronic Stucture of an Anisotropic Kondo Semiconductor CeOs2Al10: An Optical Study with Re and Ir Substitution
J. Phys. Soc. Jpn. 85:123705 2016 ( DOI:10.7566/JPSJ.85.123705)
Surface Kondo Effect and Non-Trivial Metallic State of the Kondo Insulator YbB12
Nat. Commun. 7:12690 2016 (PMID:27576449 DOI:10.1038/ncomms12690)
Slater to Mott Crossover in the Metal to Insulator Transition of Nd2Ir2O7
Phys. Rev. Lett. 117:056403 2016 (PMID:27517783 DOI:10.1103/PhysRevLett.117.056403)
Tetragonal and collapsed-tetragonal phases of CaFe2As2: A view from angle-resolved photoemission and dynamical mean-field theory
Phys. Rev. B 93:245139 2016 ( DOI:10.1103/PhysRevB.93.245139)
One-dimensional metallic surface states of Pt-induced atomic nanowires on Ge(001)
J. Phys.-Condes. Matter 28:284001 2016 (PMID:27228337 DOI:10.1088/0953-8984/28/28/284001)
Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: ホア-Sn Films
Phys. Rev. Lett. 116:096602 2016 (PMID:26991190 DOI:10.1103/PhysRevLett.116.096602)
Large modification in insulator-metal transition of VO2 films grown on Al2O3 (001) by high energy ion irradiation in biased reactive sputtering
J. Appl. Phys. 119:055308 2016 ( DOI:10.1063/1.4941348)
Ordering phenomena of high-spin/low-spin states in stepwise spin-crossover materials described by the ANNNI model
Phys. Rev. B 93014419 2016 ( DOI:10.1103/PhysRevB.93.014419)
Orbital-dependent electron correlation of LiFeAs revealed by angle-resolved photoemission spectroscopy
Phys. Rev. B 93:024503 2016 ( DOI:10.1103/PhysRevB.93.024503)
Our ideal candidate (as a graduate student)
We are looking for a highly motivated person to work on our research topics as our lab member. Our lab welcomes the person who loves taking care of creatures, hand working and handcraft too. Any kind of background (such as your expertise or major) is available.
Contact
Photophysics Laboratory, Graduate School of Frontier Biosciences, Osaka University,
1-3 Yamadaoka, Suita, Osaka 565-0871 Japan.
TEL: +81-6-6879-4600
E-mail: kimura.shin-ichi.fbs[at]osaka-u.ac.jp (Prof. Shin-ichi Kimura)
- ※Change [at] to @