Lab Members

Taken on April 19, 2024

Toshie Kai

Professor

In 1998, Toshie KAI earned a Ph.D in Graduate School of Science, Department of Biological Science at Osaka University. She went on a postdoctral career in Dr. Allan Spradling‘s lab at Department of Embryology, Carnegie Institution of Washington/HHMI in USA, where she was first introduced to Drosophila melanogaster, fruit flies. Since then, she has been studying biology of germline cells using this excellent model organism. In 2005, she set up her own lab in Temasek Lifescience Laboratories (TLL), Singapore, as a Principal Investigator. In 2010, she was promoted to Senior Principal Investigator in TLL. She also served as an Adjunct Assistant Prof (2009–2010) and Associate Prof (2011–2015) in Department of Biological Science, National University of Singapore. In 2015, she moved her lab from Singapore to Osaka, at Graduate School of Frontier Bioscience, Osaka Univ.

  • Publications

    Research articles

    • Suyama R, Cetraro N, Yew J Y, Kai T. (2023) Microbes control Drosophila germline stem cell increase and egg maturation through hormonal pathways. Commun. Biol., 6:Article number: 1287
      doi: 10.1038/s42003-023-05660-x
    • Lin Y, Suyama R, Kawaguchi S, Iki T, Kai T. (2023) Tejas functions as a core component in nuage assembly and precursor processing in Drosophila piRNA biogenesis. J. Cell Biol., 222(10):e202303125
      doi: 10.1083/jcb.202303125
      PubMed ID: 37555815
    • Iki T, Kawaguchi S, Kai T. (2023) miRNA/siRNA-directed pathway to produce noncoding piRNAs from endogenous protein-coding regions ensures Drosophila spermatogenesis. Science Advances, 9(29)
      doi: 10.1126/sciadv.adh0397
    • *Lim L-X, *Isshiki W, Iki T, Kawaguchi S, Kai T. (2022) The Tudor-domain containing protein, Kotsubu (CG9925), localizes to the nuage and functions in piRNA biogenesis in D. melanogaster. Frontiers in Molecular Biosciences (section RNA Networks and Biology), 9:Article 818302
      *Co-first authors
      doi: 10.3389/fmolb.2022.818302
    • *Iki T, Takami M, *Kai T. (2020) Modulation of Ago2 Loading by Cyclophilin 40 Endows a Unique Repertoire of Functional miRNAs during Sperm Maturation in Drosophila. Cell Reports, 33(6):108380--108393
      *Co-corresponding
      doi: 10.1016/j.celrep.2020.108380
    • Kawaguchi S, Ueki M, Kai T. (2020) Drosophila MARF1 ensures proper oocyte maturation by regulating nanos expression. PLoS One, 15(4):e0231114
      doi: 10.1371/journal.pone.0231114
      PubMed ID: 32243476
    • Teo RYW, Anand A, Sridhar V, Okamura K, Kai T. (2018) Heterochromatin protein 1a functions for piRNA biogenesis predominantly from pericentric and telomeric regions in Drosophila. Nat. Commun., 9:1735
      doi: 10.1038/s41467-018-03908-3
    • Quénerch’du E, Anand A, Kai T. (2016) The piRNA pathway is developmentally regulated during spermatogenesis in Drosophila. RNA, 22(7):1044–1054
      doi: 10.1261/rna.055996.116
    • Patil VS, Anand A, Chakrabarti A, Kai T. (2014) The Tudor domain protein Tapas, a homolog of the vertebrate Tdrd7, functions in piRNA pathway to regulate retrotransposons in germline of Drosophila melanogaster. BMC Biol., 12:61
      doi: 10.1186/s12915-014-0061-9
      PubMed ID: 25287931
    • Anand A, Kai T. (2014) Response to ‘Antisense piRNA amplification, but not piRNA production or nuage assembly, requires the Tudor-domain protein Qin’ (Correspondence). EMBO J., 33(6):540–541
      doi: 10.1002/embj.201387548
      PubMed ID: 24652837
    • Lim RSM, Anand A, Nishimiya-Fujisawa C, Kobayashi S, Kai T. (2014) Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway. Dev. Biol., 386(1):237–251
      doi: 10.1016/j.ydbio.2013.12.007
    • Pek JW, Ng BF, Kai T. (2012) Polo-mediated phosphorylation of Maelstrom regulates oocyte determination. Development, 139(24):4505–4513
      doi: 10.1242/dev.082867
    • Anand A, Kai T. (2012) The tudor domain protein Kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila. EMBO J., 31(4):870–882
      doi: 10.1038/emboj.2011.44
    • Pek JW, Kai T. (2011) DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome segregation. Proc. Natl. Acad. Sci. USA, 108(29):12007–12012
      doi: 10.1073/pnas.1106245108
    • Pek JW, Kai T. (2011) A role for Vasa in regulating mitotic chromosome condensation in Drosophila. Curr. Biol., 21(1):39–44
      doi: 10.1016/j.cub.2010.11.051
    • Patil VS, Kai T. (2010) Repression of retroelements in Drosophila germline via piRNA pathway by the tudor domain protein Tejas. Curr. Biol., 20(8):724–730
      doi: 10.1016/j.cub.2010.02.046
    • Pek JW, Lim AK, Kai T. (2009) Drosophila Maelstrom Ensures Proper Germline Stem Cell Lineage Differentiation by Repressing microRNA-7. Dev. Cell, 17(3):417–424
      doi: 10.1016/j.devcel.2009.07.017
    • Lim AK, Tao L, Kai T. (2009) piRNAs mediate post-transcriptional retroelement silencing and localization to pi-bodies in the Drosophila germline. J. Cell Biol., 186(3):333–342
      doi: 10.1083/jcb.200904063
    • Lim AK, Kai T. (2007) Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 104(16):6714–6719
      doi: 10.1073/pnas.0701920104
    • Kai T, Williams D, Spradling AC. (2005) The expression profile of purified Drosophila germline stem cells. Dev. Biol., 283(2):486–502
      doi: 10.1016/j.ydbio.2005.04.018
    • Kai T, Spradling A. (2004) Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature, 428(6982):564–569
      doi: 10.1038/nature02436
    • Kai T, Spradling A. (2003) An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proc. Natl. Acad. Sci. USA, 100(8):4633–4638
      doi: 10.1073/pnas.0830856100

    Review articles

    • Arakawa K, Hirose T, Inada T, Ito T, Kai T, Oyama M, Tomari Y, Yoda T, Nakagawa S. (2023) Nondomain biopolymers: Flexible molecular strategies to acquire biological functions. Genes to Cells,
      doi: 10.1111/gtc.13050
      PubMed ID: 37249032
    • Niwa R, Kai T. (2020) Editorial overview: Stem cells orchestrate oogenesis: a lesson from the fruit fly, Drosophila melanogaster. Curr. Opin. Insect Sci., 37:iii–v
      doi: 10.1016/j.cois.2020.03.001
    • Gleason RJ, Anand A, *Kai T, *Chen X. (2017) Protecting and diversifying the germline. GENETICS, 208(2):435–471
      (A part of FLY BOOK) *Co-corresponding
      doi: 10.1534/genetics.117.300208
    • Lim RSM, Kai T. (2015) A piece of the pi(e): the diverse roles of animal piRNAs and their PIWI partners. Sem. Cell Dev. Biol., 47–48:17–31
      (Special Issue on Coding and Non-coding RNAs)
      doi: 10.1016/j.semcdb.2015.10.025
    • Pek JW, Anand A, Kai T. (2012) Tudor domain proteins in development (Invited Review Article). Development, 139:2255–2266
      doi: 10.1242/dev.073304
    • Pek JW, Patil VS, Kai T. (2012) The piRNA pathway and the potential processing site, the nuage, in the Drosophila germline. Dev. Growth Differ., 54(1):66–77
      doi: 10.1111/j.1440-169X.2011.01316
    • Pek JW, Kai T. (2011) Non-coding RNAs enter mitosis: functions, conservation and implications. Cell Div., 6:6
      doi: 10.1186/1747-1028-6-6
      PubMed ID: 21356070
    • Pek JW, Kai T. (2009) Conserved germline organelle, nuage, serves as site for processing of Piwi-interacting RNAs. (in Japanese). Exp. Med., 27:393–399
    • Kai T. (2004) Germline stem cells and their niches. (in Japanese). Tanpakushitsu Kakusan Koso, 49(6):710–717
    • Spradling A, Drummond-Barbosa D, Kai T. (2001) Stem cells find their niche. Nature, 414(6859):98–104
      doi: 10.1038/35102160

    Protocol articles

    • Lim RS, Osato M, Kai T. (2015) Isolation of undifferentiated female germline cells from adult Drosophila ovaries. Curr. Protoc. Stem Cell Biol., 34:2E.3.1–2E.3.14
      doi: 10.1002/9780470151808.sc02e03s22

Taichiro Iki

Associate Professor

In 2008, I earned my Ph.D in Dr. Hiroshi Oyaizu’s lab in the graduate school of the university of Tokyo. My research focus was on one of symbiotic bacteria, Azorhizobium caulinodans, which induces nodules on a leguminous plant Sesbania rostrata. In the symbiotic organ, A. caulinodans converts atmospheric N2 to ammonium to serve it to the host plants. I was studying of the nif gene clusters essential for N2 fixation, especially of the regulatory mechanisms on their expression.

From 2008 to 2012, I was working as a postdoc in Dr. Masayuki Ishikawa’s lab in the National Institute of Agrobiological Sciences (NIAS). One of my research objectives was to elucidate the molecular mechanisms by which small non-coding RNAs repress target gene expression in plants. We have developed a cell-free system that recapitulates the assembly and activity of RNA-induced silencing complex (RISC), the effector of posttranscriptional gene silencing. The findings include the dependence of RISC assembly on molecular chaperone machinery comprising HSP90 and the co-chaperone cyclophilin 40/SQUINT.

From 2012 to 2016, I was working as a postdoc in Dr. Olivier Voinnet’s lab in ETH Zürich, and experienced the European academic cultures. During the period of 2013 to 2015, my research was funded by Marie Curie International Incoming Fellowships. The research topics include the dissection of viral suppressors of RNA silencing which have been developed by diverse viral genera as a counter defensive strategy against host antiviral RNA silencing activities. Also, I was studying of microRNA (miRNA) structures and the cellular impacts.

From February in 2016, I am working as an assistant professor in Dr. Toshie Kai’s lab at Graduate School of Frontier Bioscience (FBS), Osaka University. Our research objective is to decipher the mechanisms underlying the maintenance and differentiation of germ cells in animals. We are using a model organism Drosophila melanogaster. Of my particular interest, if not all, are the non-coding RNA-mediated processes in oogenesis or spermatogenesis.

  • Publications

    Research articles

    • Lin Y, Suyama R, Kawaguchi S, Iki T, Kai T. (2023) Tejas functions as a core component in nuage assembly and precursor processing in Drosophila piRNA biogenesis. J. Cell Biol., 222(10):e202303125
      doi: 10.1083/jcb.202303125
      PubMed ID: 37555815
    • Iki T, Kawaguchi S, Kai T. (2023) miRNA/siRNA-directed pathway to produce noncoding piRNAs from endogenous protein-coding regions ensures Drosophila spermatogenesis. Science Advances, 9(29)
      doi: 10.1126/sciadv.adh0397
    • *Iki T, Takami M, *Kai T. (2020) Modulation of Ago2 Loading by Cyclophilin 40 Endows a Unique Repertoire of Functional miRNAs during Sperm Maturation in Drosophila. Cell Reports, 33(6):108380–108393
      *Co-corresponding
    • Iki T, Tschopp MA, Voinnet O. (2017) Biochemical and genetic functional dissection of the P38 viral suppressor of RNA silencing. RNA, 23(5):639–654
    • Yoshikawa M, Iki T, Tsutsui Y, Miyashita K, Poethig S, Habu Y, Ishikawa M. (2013) 3’ fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3. Proc. Nat. Acad. Sci. USA, 110(10):4117–4122
    • Ye R, Wang W, Iki T, Liu C, Wu Y, Ishikawa M, Zhou X, Qi Y. (2012) Cytoplasmic Assembly and Selective Nuclear Import of Arabidopsis ARGONAUTE4/siRNA Complexes. Mol. Cell, 46(6):859–870
    • Iki T, Yoshikawa M, Meshi T, Ishikawa M. (2012) Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J., 31(2):267–278
    • Iki T, Yoshikawa M, Nishikiori M, Jaudal MC, Matsumoto-Yokoyama E, Mitsuhara I, Meshi T, Ishikawa M. (2010) In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol. Cell, 39(2):282–291
    • Suzuki T, Aono T, Liu C. T, Suzuki S, Iki T, Yokota K, Oyaizu H. (2008) An outer membrane autotransporter, AoaA, of Azorhizobium caulinodans is required for sustaining high N2-fixing activity of stem nodules. FEMS Microbiology Letters, 285:16–24
    • Suzuki, S, Aono T, Lee KB, Suzuki T, Liu C. T, Miwa H, Wakao S, Iki T, Oyaizu H. (2007) Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis. Applied and Environmental Microbiology, 73:6650–6659
    • Iki T, Aono T, Oyaizu H. (2007) Evidence for functional differentiation of duplicated nifH genes in Azorhizobium caulinodans. , 274(2):173–179
    • Liu, CT, Aono T, Kinoshita M, Miwa H, Iki T, Lee KB, Oyaizu H. (2006) Isolation and differential expression of beta-1,3-glucanase messenger RNAs, SrGLU3 and SrGLU4, following inoculation of Sesbania rostrata. Functional Plant Biology, 33:983–990

    Review articles

    • Iki T. (2017) Messages on small RNA duplexes in plants. J. Plant Res., 130:7–16

Shinichi Kawaguchi

Assistant Professor

In 1998, I earned a Ph.D in Graduate School of Science, Department of Biological Science at Osaka University. From 1999 to 2001, I was working as a postdoc in Dr. Shigeyuki Yokoyama‘s lab (Spring-8, RIKEN) to elucidate the protein function from its 3D structure. In 2001, I joined Dr. Yixian Zheng‘s lab as a research fellow to study the mechanism by which the microtubules are tethered to the centrosome. In 2004, I was working in NEC Soft Ltd for the collaboration with Meiji-Pharmaceutical University. From 2005 to 2014, I was working as a postdoc in Dr. Davis Ng‘s lab (Temasek Lifesciences Laboratory, Singapore) to study the mechanism of the protein quality control. I am working as an assistant professor in Dr. Toshie Kai’s lab at Graduate School of Frontier Bioscience (FBS), Osaka University to study the protein function which is essential for the germline development.

  • Publications

    Research articles

    • Lin Y, Suyama R, Kawaguchi S, Iki T, Kai T. (2023) Tejas functions as a core component in nuage assembly and precursor processing in Drosophila piRNA biogenesis. J. Cell Biol., 222(10):e202303125
      doi: 10.1083/jcb.202303125
      PubMed ID: 37555815
    • Iki T, Kawaguchi S, Kai T. (2023) miRNA/siRNA-directed pathway to produce noncoding piRNAs from endogenous protein-coding regions ensures Drosophila spermatogenesis. Science Advances, 9(29)
      doi: 10.1126/sciadv.adh0397
    • Kawaguchi S, Ueki M, Kai T. (2020) Drosophila MARF1 ensures proper oocyte maturation by regulating nanos expression. PLoS One, 15(4):e0231114
    • Kanamori E, Kawaguchi S, Kuramitsu S, Kouyama T, Murakami M. (2015) Structural comparison between the open and closed forms of citrate synthase from Thermus thermophilus HB8. Biophys. Physicobiol., 12:47–56
      doi: 10.2142/biophysico.12.0_47
      PubMed ID: 27493854
    • Prasad R, Kawaguchi S, Ng DT. (2012) Biosynthetic mode can determine the mechanism of protein quality control. Biochem. Biophys. Res. Commun., 425(3):689–695
    • Kawaguchi S, Hsu CL, Ng DT. (2010) Interplay of substrate retention and export signals in endoplasmic reticulum quality control. PLoS One, 5(11):e15532
    • Prasad R, Kawaguchi S, Ng DT. (2010) A nucleus-based quality control mechanism for cytosolic proteins. Mol. Biol. Cell, 21(13):2117–2127
    • Ducat D, Kawaguchi S, Liu H, Yates JR 3rd, Zheng Y. (2008) Regulation of microtubule assembly and organization in mitosis by the AAA+ ATPase Pontin. Mol. Biol. Cell, 19(7):3097–3110
    • Ito K, Arai R, Fusatomi E, Kamo-Uchikubo T, Kawaguchi S, Akasaka R, Terada T, Kuramitsu S, Shirouzu M, Yokoyama S. (2006) Crystal structure of the conserved protein TTHA0727 from Thermus thermophilus HB8 at 1.9 Å resolution: A CMD family member distinct from carboxymuconolactone decarboxylase (CMD) and AhpD. Protein Sci., 15(5):1187–1192
      doi: 10.1110/ps.062148506
      PubMed ID: 16597838
    • Tanaka Y, Tawaramoto-Sasanuma M, Kawaguchi S, Ohta T, Yoda K, Kurumizaka H, Yokoyama S. (2004) Expression and purification of recombinant human histones. Methods, 33(1):3–11
    • Kawaguchi S, Zheng Y. (2004) Characterization of a Drosophila centrosome protein CP309 that shares homology with Kendrin and CG-NAP. Mol. Biol. Cell, 15(1):37–45
    • Tanaka Y, Nureki O, Kurumizaka H, Fukai S, Kawaguchi S, Ikuta M, Iwahara J, Okazaki T, Yokoyama S. (2001) Crystal structure of the CENP-B protein-DNA complex: the DNA-binding domains of CENP-B induce kinks in the CENP-B box DNA. EMBO J., 20(23):6612–6618
    • Ura H, Nakai T, Kawaguchi S, Miyahara I, Hirotsu K, Kuramitsu S. (2001) Substrate recognition mechanism of thermophilic dual-substrate enzyme. J. Biochem. (Tokyo), 130(1):89–98
    • Kawaguchi S, Muller J, Linde D, Kuramitsu S, Shibata T, Inoue Y, Vassylyev DG, Yokoyama S. (2001) The crystal structure of the ttCsaA protein: an export-related chaperone from Thermus thermophilus. EMBO J., 20(3):562–569
    • Renault L, Kerjan P, Pasqualato S, Menetrey J, Robinson JC, Kawaguchi S, Vassylyev DG, Yokoyama S, Mirande M, Cherfils J. (2001) Structure of the EMAPII domain of human aminoacyl-tRNA synthetase complex reveals evolutionary dimer mimicry. EMBO J., 20(3):570–578
    • Ishijima J, Nakai T, Kawaguchi S, Hirotsu K, Kuramitsu S. (2000) Free energy requirement for domain movement of an enzyme. J. Biol. Chem., 275(25):18939–18945
    • Matsui I, Matsui E, Sakai Y, Kikuchi H, Kawarabayasi Y, Ura H, Kawaguchi S, Kuramitsu S, Harata K. (2000) The molecular structure of hyperthermostable aromatic aminotransferase with novel substrate specificity from Pyrococcus horikoshii. J. Biol. Chem., 275(7):4871–4879
    • Nakai T, Okada K, Akutsu S, Miyahara I, Kawaguchi S, Kato R, Kuramitsu S, Hirotsu K. (1999) Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex with maleate. Biochemistry, 38(8):2413–2424
    • Nobe Y, Kawaguchi S, Ura H, Nakai T, Hirotsu K, Kato R, Kuramitsu S. (1998) The novel substrate recognition mechanism utilized by aspartate aminotransferase of the extreme thermophile Thermus thermophilus HB8. J. Biol. Chem., 273(45):29554–29564
    • Kawaguchi S, Kuramitsu S. (1998) Thermodynamics and molecular simulation analysis of hydrophobic substrate recognition by aminotransferases. J. Biol. Chem., 273(29):18353–18364
    • Nakai T, Okada K, Kawaguchi S, Kato R, Kuramitsu S, Hirotsu K. (1998) Crystallization and preliminary X-ray characterization of aspartate aminotransferase from an extreme thermophile, Thermus thermophilus HB8. Acta Cryst., D54(Pt 5):1032–1034
    • Hiramatsu Y, Kato R, Kawaguchi S, Kuramitsu S. (1997) Cloning and characterization of the uvrD gene from an extremely thermophilic bacterium, Thermus thermophilus HB8. Gene, 199:77–82
    • Kawaguchi S, Nobe Y, Yasuoka J, Wakamiya T, Kusumoto S, Kuramitsu S. (1997) Enzyme flexibility: new concept in recognition of hydrophobic substrates. J. Biochem., 122(1):55–63
    • Kawaguchi S, Kuramitsu S. (1995) Separation of heat-stable proteins from Thermus thermophilus HB8 by two-dimensional electrophoresis. Electophoresis, 16:1060–1066
    • Kawaguchi S, Kuramitsu S. (1994) Homologus ligation. Trends Genet., 10(12):420
    • Miyazawa K, Kawaguchi S, Okamoto A, Kato R, Ogawa T, Kuramitsu S. (1994) Construction of aminotransferase chimeras and analysis of their substrate specificity. J. Biochem., 115(3):568–577

    Review articles

    • Kawaguchi S, Ng DT. (2007) SnapShot: ER-associated protein degradation pathways. Cell, 129(6):1230
    • Kanehara K, Kawaguchi S, Ng DT. (2007) The EDEM and Yos9p families of lectin-like ERAD factors. Semin Cell Dev. Biol., 18(6):743–750
    • Yokoyama S, Matsuo Y, Hirota H, Kigawa T, Shirouzu M, Kuroda Y, Kurumizaka H, Kawaguchi S, Ito Y, Shibata T, Kainosho M, Nishimura Y, Inoue Y, Kuramitsu S. (2000) Structural genomics projects in Japan. Prog. Biophys. Mol. Biol., 73(5):363–376
    • Kawaguchi S, Kuramitsu S. (1994) Mechanism of enzyme reaction. (in Japanese). Tanpakushitsu Kakusan Koso, 39(7):1083–1090

Ritsuko Suyama

Assistant Professor

In 2003, I earned my Ph.D. in Graduate School of Medicine, Department of Medicine at Kyushu University. From 2000 to 2007, I worked in Dr. Anne Ephrussi’s lab at European Molecular Biology Laboratory (EMBL). The research topic is Drosophila oogenesis. We revealed a new mechanism of retaining Oskar protein in the oocyte cortex employing the germline and body axis formation. From 2007 to 2009, I worked in Dr. Asifa Akhtar’s lab and investigated dosage compensation mechanism in Drosophila. We identified the loci on X-chromosomes that bind to nucleoporins and their spatial position in the nucleus. From 2009 to 2012, I worked in Dr. Tadashi Uemura’s lab in Kyoto University and investigated the mechanism of dendrite formation in sensory neurons during fly metamorphosis. From 2012–2018, I worked in Dr. Nicholas Luscombe’s lab. We established a single-cell RNA-seq technique in Ciona embryos to detail gene dynamics involved in tissue and cell lineage specification. Since 2018, I have been working as an assistant professor in Dr. Toshie Kai’s lab at Graduate School of Frontier Bioscience (FBS), Osaka University and focus the developmental mechanism of Drosophila oogenesis and the relevant environmental effect.

  • Publications
    • Suyama R, Cetraro N, Yew J Y, Kai T. (2023) Microbes control Drosophila germline stem cell increase and egg maturation through hormonal pathways. Commun. Biol., 6:Article number: 1287
      doi: 10.1038/s42003-023-05660-x
    • Lin Y, Suyama R, Kawaguchi S, Iki T, Kai T. (2023) Tejas functions as a core component in nuage assembly and precursor processing in Drosophila piRNA biogenesis. J. Cell Biol., 222(10):e202303125
      doi: 10.1083/jcb.202303125
      PubMed ID: 37555815
    • Suyama R, Kai T. (2021) Review: Non-membranous RNP condensates control the fate of germline cells. Jikken-igaku special issue, 39(10)
      (equal corresponding author)
      ISBN: 978-4-7581-0395-4
    • Wang K, Tomura R, Chen W, Kiyooka M, Ishizaki H, Aizu T, Minakuchi Y, Seki M, Suzuki Y, Omotezako T, Suyama R, Masunaga A, Plessy C, Luscombe NM, Dantec C, Lemaire P, Itoh T, Toyoda A, Nishida H, Onuma TA. (2020) A genome database for a Japanese population of the larvacean Oikopleura dioica. Dev. Growth Differ., 62(6):450-461
      doi: 10.1111/dgd.12689
    • Ilsley GR*, Suyama R*, Noda T, Satoh N, Luscombe NM. (2020) Finding cell-specific expression patterns in the early Ciona embryo with single-cell RNA-seq. Sci. Rep., 10(1):4961
      doi: 10.1038/s41598-020-61591-1
    • Suyama R. (2015) Meeting report for single cell genomics conference. Jikken-Igaku, 33(1):44–45
    • Satoh D*, Suyama R*, Kimura K, Uemura T. (2012) High-resolution in vivo imaging of regenerating dendrites of Drosophila sensory neurons during metamorphosis: local filopodial degeneration and heterotypic dendrite-dendrite contacts. Genes to Cells, 12:939–951
      equally contribution (*)
      doi: 10.1111/gtc.12008
    • Vaquerizas JM*, Suyama R*, Kind J*, Miura K, Luscombe NM, Akhtar A. (2010) Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet., 6(2):e1000846
      equally contribution (*)
      doi: 10.1371/journal.pgen.1000846
    • Suyama R*, Jenney A*, Curado S*, Ephrussi A. (2009) The actin binding protein Lasp promotes Oskar accumulation at the posterior pole of the Drosophila embryo. Development, 136:95–105
      equally contribution (*)
      doi: 10.1242/dev.027698
    • Arima K, Umeshita-Suyama R, Sakata Y, Akaiwa M, Mao XQ, Enomoto T, Dake Y, Shimazu S, Yamashita T, Sugawara N, Brodeur S, Geha R, Puri RK, Sayegh MH, Adra CN, Hamasaki N, Hamasaki N, Hopkin JM, Shirakawa T, Izuhara K. (2002) Upregulation of IL-13 concentration in vivo by the IL-13 variant associated with bronchial asthma. J. Allergy Clin. Immunol., 109(6):980–987
      doi: 10.1067/mai.2002.124656
    • Umeshita-Suyama R, Sugimoto R, Akaiwa M, Arima K, Hamasaki N, Izuhara K. (2000) Characterization of IL-4 and IL-13 signals dependent on the human IL-13 receptor α chain 1. Int. Immunol., 12(11):1499–1509
    • Ohshima K, Akaiwa M, Umeshita R, Suzumiya J, Izuhara K, Kikuchi M. (2001) Interleukin-13 and Interluekin-13 receptor in Hodgkin’s disease: possible autocrine and involvement in fibrosis. Histopathology, 38:368–375
    • Akaiwa M, Yu B, Umeshita R, Terada N, Suto H, Koga T, Arima K, Matsushita S, Saito H, Ogawa H, Furue M, Hamasaki N, Ohshima K, Izuhara K. (2001) Localization of Human Interleukin-13 Receptor in Non Hematopoietic Cells. Cytokine, 13:75–84
    • Heinzmann A, Mao X-Q, Akaiwa M, Kremor RT, Gao P-S, Ohshima K, Umeshita R, Abe Y, Braun S, Yamashita, T, Roberts MH, Sugimoto R, Arima K, Arinobu Y, Yu B, Kruse S, Enomoto T, Dake Y, Kawai M, Shimazu S, Sasaki S, Addra CN, Hamasaki N, Izuhara K, Shirakawa T, Hopkin JM. (2000) Genetic variants of IL-13 signaling and human asthma and atopy. Human Molecular genetics, 9:549–559
    • Izuhara K, Umeshita R, Akaiwa M, Shirakawa T, Deichmann A, Arima K, Yu B, Hamasaki N, Hopkin JM. (2000) Recent advances in understanding how interleukin-13 signals are involved in pathogenesis of bronchial asthma (review). , :505–512
    • Izuhara K, Sugimoto R, Akaiwa M, Umeshita R, Arima K, Bin Yu, Hamasaki N. (2000) Signal transduction of IL-4 and IL-13: its correlation with the pathogenesis of allergic diseases. Molecular target for Hematological Malignancies and Cancer, :95–102
    • Umeshita R, Izuhara K. (2000) IL-13 receptor (review in Japanese). RINSHO MEN-EKI, 34:608–612
    • Sawa M, Imaeda Y, Hiratake J, Fujii R, Umeshita R, Watanabe M, Kondo H, Oda J. (1998) Toward the antibody-catalyzed chemiluminescence: Design and synthesis of hapten. Bioorg. Med. Chem., 8:647–652
    • Nakatani T, Umeshita R, Hiratake J, Shinzaki A, Suzuki T, Oda J. (1994) Characterization of a catalytic antibody for stereoselective ester hydrolysis a catalytic residue and mode of product inhibition. Bioorg. Med. Chem., 2:457–468
    • Nakatani T, Hiratake J, Shinzaki A, Umeshita R, Suzuki T, Nishioka T, Nakajima H, Oda J. (1993) A mode of Product inhibition of Esterolytic Antibody. , 34(31):4945–4948

Hilo YEN

Research Fellow

Masaya Matsui

PhD Student D5/D5

Wakana Isshiki

PhD Student D4/D5 (Major in FBS, Minor in WISE / JSPS DC1)

Xin XU

PhD Student D4/D5

IKELE Chinyere Marycynthia

PhD Student D2/D5 (MEXT Fellowship)

Hinano Minami

PhD Student D2/D5

Haitian QIN

PhD Student D2/D5

Miaomiao ZHAO

PhD Student D1/D5

Naoki Murakami

PhD Student D1/D5

Jinglan ZHENG

Research Student

Chisato Yanagisawa

Technical Assistant

Minako Moriguchi

Technical Assistant