現在の研究室メンバー

2024年4月19日 撮影

甲斐 歳惠

教授

1998年、大阪大学大学院理学研究科にて博士号(理学)取得。99–2005年、カーネギー研究所/ハワード・ヒューズ医学研究所の Allan Spradling 博士の研究室にて博士研究員(2000−2001年、旧科学技術庁 長期在外研究員としてサポートされた期間を含む)。2005年よりシンガポール・テマセク生命科学研究所にて Principal Investigator としてラボを主催。2009–2010年、シンガポール国立大生命科学科併任助教、2011–2015年、シンガポール国立大生命科学科併任准教授。2015年より現職。何かを読んでないと落ち着かない活字中毒人間。大阪府岸和田市出身。

  • 業績一覧

    Research articles

    • Suyama R, Cetraro N, Yew J Y, Kai T. (2023) Microbes control Drosophila germline stem cell increase and egg maturation through hormonal pathways. Commun. Biol., 6:Article number: 1287
      doi: 10.1038/s42003-023-05660-x
    • Lin Y, Suyama R, Kawaguchi S, Iki T, Kai T. (2023) Tejas functions as a core component in nuage assembly and precursor processing in Drosophila piRNA biogenesis. J. Cell Biol., 222(10):e202303125
      doi: 10.1083/jcb.202303125
      PubMed ID: 37555815
    • Iki T, Kawaguchi S, Kai T. (2023) miRNA/siRNA-directed pathway to produce noncoding piRNAs from endogenous protein-coding regions ensures Drosophila spermatogenesis. Science Advances, 9(29)
      doi: 10.1126/sciadv.adh0397
    • *Lim L-X, *Isshiki W, Iki T, Kawaguchi S, Kai T. (2022) The Tudor-domain containing protein, Kotsubu (CG9925), localizes to the nuage and functions in piRNA biogenesis in D. melanogaster. Frontiers in Molecular Biosciences (section RNA Networks and Biology), 9:Article 818302
      *Co-first authors
      doi: 10.3389/fmolb.2022.818302
    • *Iki T, Takami M, *Kai T. (2020) Modulation of Ago2 Loading by Cyclophilin 40 Endows a Unique Repertoire of Functional miRNAs during Sperm Maturation in Drosophila. Cell Reports, 33(6):108380--108393
      *Co-corresponding
      doi: 10.1016/j.celrep.2020.108380
    • Kawaguchi S, Ueki M, Kai T. (2020) Drosophila MARF1 ensures proper oocyte maturation by regulating nanos expression. PLoS One, 15(4):e0231114
      doi: 10.1371/journal.pone.0231114
      PubMed ID: 32243476
    • Teo RYW, Anand A, Sridhar V, Okamura K, Kai T. (2018) Heterochromatin protein 1a functions for piRNA biogenesis predominantly from pericentric and telomeric regions in Drosophila. Nat. Commun., 9:1735
      doi: 10.1038/s41467-018-03908-3
    • Quénerch’du E, Anand A, Kai T. (2016) The piRNA pathway is developmentally regulated during spermatogenesis in Drosophila. RNA, 22(7):1044–1054
      doi: 10.1261/rna.055996.116
    • Patil VS, Anand A, Chakrabarti A, Kai T. (2014) The Tudor domain protein Tapas, a homolog of the vertebrate Tdrd7, functions in piRNA pathway to regulate retrotransposons in germline of Drosophila melanogaster. BMC Biol., 12:61
      doi: 10.1186/s12915-014-0061-9
      PubMed ID: 25287931
    • Anand A, Kai T. (2014) Response to ‘Antisense piRNA amplification, but not piRNA production or nuage assembly, requires the Tudor-domain protein Qin’ (Correspondence). EMBO J., 33(6):540–541
      doi: 10.1002/embj.201387548
      PubMed ID: 24652837
    • Lim RSM, Anand A, Nishimiya-Fujisawa C, Kobayashi S, Kai T. (2014) Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway. Dev. Biol., 386(1):237–251
      doi: 10.1016/j.ydbio.2013.12.007
    • Pek JW, Ng BF, Kai T. (2012) Polo-mediated phosphorylation of Maelstrom regulates oocyte determination. Development, 139(24):4505–4513
      doi: 10.1242/dev.082867
    • Anand A, Kai T. (2012) The tudor domain protein Kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila. EMBO J., 31(4):870–882
      doi: 10.1038/emboj.2011.44
    • Pek JW, Kai T. (2011) DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome segregation. Proc. Natl. Acad. Sci. USA, 108(29):12007–12012
      doi: 10.1073/pnas.1106245108
    • Pek JW, Kai T. (2011) A role for Vasa in regulating mitotic chromosome condensation in Drosophila. Curr. Biol., 21(1):39–44
      doi: 10.1016/j.cub.2010.11.051
    • Patil VS, Kai T. (2010) Repression of retroelements in Drosophila germline via piRNA pathway by the tudor domain protein Tejas. Curr. Biol., 20(8):724–730
      doi: 10.1016/j.cub.2010.02.046
    • Pek JW, Lim AK, Kai T. (2009) Drosophila Maelstrom Ensures Proper Germline Stem Cell Lineage Differentiation by Repressing microRNA-7. Dev. Cell, 17(3):417–424
      doi: 10.1016/j.devcel.2009.07.017
    • Lim AK, Tao L, Kai T. (2009) piRNAs mediate post-transcriptional retroelement silencing and localization to pi-bodies in the Drosophila germline. J. Cell Biol., 186(3):333–342
      doi: 10.1083/jcb.200904063
    • Lim AK, Kai T. (2007) Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 104(16):6714–6719
      doi: 10.1073/pnas.0701920104
    • Kai T, Williams D, Spradling AC. (2005) The expression profile of purified Drosophila germline stem cells. Dev. Biol., 283(2):486–502
      doi: 10.1016/j.ydbio.2005.04.018
    • Kai T, Spradling A. (2004) Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature, 428(6982):564–569
      doi: 10.1038/nature02436
    • Kai T, Spradling A. (2003) An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proc. Natl. Acad. Sci. USA, 100(8):4633–4638
      doi: 10.1073/pnas.0830856100

    Review articles

    • Arakawa K, Hirose T, Inada T, Ito T, Kai T, Oyama M, Tomari Y, Yoda T, Nakagawa S. (2023) Nondomain biopolymers: Flexible molecular strategies to acquire biological functions. Genes to Cells,
      doi: 10.1111/gtc.13050
      PubMed ID: 37249032
    • Niwa R, Kai T. (2020) Editorial overview: Stem cells orchestrate oogenesis: a lesson from the fruit fly, Drosophila melanogaster. Curr. Opin. Insect Sci., 37:iii–v
      doi: 10.1016/j.cois.2020.03.001
    • Gleason RJ, Anand A, *Kai T, *Chen X. (2017) Protecting and diversifying the germline. GENETICS, 208(2):435–471
      (A part of FLY BOOK) *Co-corresponding
      doi: 10.1534/genetics.117.300208
    • Lim RSM, Kai T. (2015) A piece of the pi(e): the diverse roles of animal piRNAs and their PIWI partners. Sem. Cell Dev. Biol., 47–48:17–31
      (Special Issue on Coding and Non-coding RNAs)
      doi: 10.1016/j.semcdb.2015.10.025
    • Pek JW, Anand A, Kai T. (2012) Tudor domain proteins in development (Invited Review Article). Development, 139:2255–2266
      doi: 10.1242/dev.073304
    • Pek JW, Patil VS, Kai T. (2012) The piRNA pathway and the potential processing site, the nuage, in the Drosophila germline. Dev. Growth Differ., 54(1):66–77
      doi: 10.1111/j.1440-169X.2011.01316
    • Pek JW, Kai T. (2011) Non-coding RNAs enter mitosis: functions, conservation and implications. Cell Div., 6:6
      doi: 10.1186/1747-1028-6-6
      PubMed ID: 21356070
    • Pek JW, Kai T. (2009) Conserved germline organelle, nuage, serves as site for processing of Piwi-interacting RNAs. (in Japanese). Exp. Med., 27:393–399
    • Kai T. (2004) Germline stem cells and their niches. (in Japanese). Tanpakushitsu Kakusan Koso, 49(6):710–717
    • Spradling A, Drummond-Barbosa D, Kai T. (2001) Stem cells find their niche. Nature, 414(6859):98–104
      doi: 10.1038/35102160

    Protocol articles

    • Lim RS, Osato M, Kai T. (2015) Isolation of undifferentiated female germline cells from adult Drosophila ovaries. Curr. Protoc. Stem Cell Biol., 34:2E.3.1–2E.3.14
      doi: 10.1002/9780470151808.sc02e03s22

井木 太一郎

准教授

2008年に東京大学大学院・農学生命科学研究科にて博士号を取得。2008年から2012年まで、独立行政法人・農業生物資源研究所にて博士研究員。2012年から2016年までスイス連邦工科大学・Eidgenössische Technische Hochschule Zürich(ETH Zürich)にて博士研究員。その間、2013年から2015年まで、Marie Curie Actions - International Incoming Fellowship(IIF)の研究員として活動。2016年より大阪大学大学院生命機能研究科・時空生物学講座・生殖生物学研究室にて助教。実はずっと植物屋。RNA を介したあらゆる現象に研究興味がある。これまでは RNA サイレンシングの分子機構についての研究に没頭。趣味はフットボールをすること、観ること。スイスでスノーボードに目覚める。地元は大阪府和泉市。

  • 業績一覧

    Research articles

    • Lin Y, Suyama R, Kawaguchi S, Iki T, Kai T. (2023) Tejas functions as a core component in nuage assembly and precursor processing in Drosophila piRNA biogenesis. J. Cell Biol., 222(10):e202303125
      doi: 10.1083/jcb.202303125
      PubMed ID: 37555815
    • Iki T, Kawaguchi S, Kai T. (2023) miRNA/siRNA-directed pathway to produce noncoding piRNAs from endogenous protein-coding regions ensures Drosophila spermatogenesis. Science Advances, 9(29)
      doi: 10.1126/sciadv.adh0397
    • *Iki T, Takami M, *Kai T. (2020) Modulation of Ago2 Loading by Cyclophilin 40 Endows a Unique Repertoire of Functional miRNAs during Sperm Maturation in Drosophila. Cell Reports, 33(6):108380–108393
      *Co-corresponding
    • Iki T, Tschopp MA, Voinnet O. (2017) Biochemical and genetic functional dissection of the P38 viral suppressor of RNA silencing. RNA, 23(5):639–654
    • Yoshikawa M, Iki T, Tsutsui Y, Miyashita K, Poethig S, Habu Y, Ishikawa M. (2013) 3’ fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3. Proc. Nat. Acad. Sci. USA, 110(10):4117–4122
    • Ye R, Wang W, Iki T, Liu C, Wu Y, Ishikawa M, Zhou X, Qi Y. (2012) Cytoplasmic Assembly and Selective Nuclear Import of Arabidopsis ARGONAUTE4/siRNA Complexes. Mol. Cell, 46(6):859–870
    • Iki T, Yoshikawa M, Meshi T, Ishikawa M. (2012) Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J., 31(2):267–278
    • Iki T, Yoshikawa M, Nishikiori M, Jaudal MC, Matsumoto-Yokoyama E, Mitsuhara I, Meshi T, Ishikawa M. (2010) In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol. Cell, 39(2):282–291
    • Suzuki T, Aono T, Liu C. T, Suzuki S, Iki T, Yokota K, Oyaizu H. (2008) An outer membrane autotransporter, AoaA, of Azorhizobium caulinodans is required for sustaining high N2-fixing activity of stem nodules. FEMS Microbiology Letters, 285:16–24
    • Suzuki, S, Aono T, Lee KB, Suzuki T, Liu C. T, Miwa H, Wakao S, Iki T, Oyaizu H. (2007) Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis. Applied and Environmental Microbiology, 73:6650–6659
    • Iki T, Aono T, Oyaizu H. (2007) Evidence for functional differentiation of duplicated nifH genes in Azorhizobium caulinodans. , 274(2):173–179
    • Liu, CT, Aono T, Kinoshita M, Miwa H, Iki T, Lee KB, Oyaizu H. (2006) Isolation and differential expression of beta-1,3-glucanase messenger RNAs, SrGLU3 and SrGLU4, following inoculation of Sesbania rostrata. Functional Plant Biology, 33:983–990

    Review articles

    • Iki T. (2017) Messages on small RNA duplexes in plants. J. Plant Res., 130:7–16

河口 真一

助教

1998年:大阪大学大学院理学研究科にて博士号(理学)取得。1998年–2000年:理化学研究所(播磨)、基礎科学特別研究員。2000年–2004年:カーネギー研究所(米国・ボルチモア)、ポスドク研究員。2004年−2005年:NEC ソフト株式会社(明治薬科大学との共同研究)、主任研究員。2005年–2014年:テマセク生命科学研究所(シンガポール)、博士研究員。2014年より現職。

  • 業績一覧

    Research articles

    • Lin Y, Suyama R, Kawaguchi S, Iki T, Kai T. (2023) Tejas functions as a core component in nuage assembly and precursor processing in Drosophila piRNA biogenesis. J. Cell Biol., 222(10):e202303125
      doi: 10.1083/jcb.202303125
      PubMed ID: 37555815
    • Iki T, Kawaguchi S, Kai T. (2023) miRNA/siRNA-directed pathway to produce noncoding piRNAs from endogenous protein-coding regions ensures Drosophila spermatogenesis. Science Advances, 9(29)
      doi: 10.1126/sciadv.adh0397
    • Kawaguchi S, Ueki M, Kai T. (2020) Drosophila MARF1 ensures proper oocyte maturation by regulating nanos expression. PLoS One, 15(4):e0231114
    • Kanamori E, Kawaguchi S, Kuramitsu S, Kouyama T, Murakami M. (2015) Structural comparison between the open and closed forms of citrate synthase from Thermus thermophilus HB8. Biophys. Physicobiol., 12:47–56
      doi: 10.2142/biophysico.12.0_47
      PubMed ID: 27493854
    • Prasad R, Kawaguchi S, Ng DT. (2012) Biosynthetic mode can determine the mechanism of protein quality control. Biochem. Biophys. Res. Commun., 425(3):689–695
    • Kawaguchi S, Hsu CL, Ng DT. (2010) Interplay of substrate retention and export signals in endoplasmic reticulum quality control. PLoS One, 5(11):e15532
    • Prasad R, Kawaguchi S, Ng DT. (2010) A nucleus-based quality control mechanism for cytosolic proteins. Mol. Biol. Cell, 21(13):2117–2127
    • Ducat D, Kawaguchi S, Liu H, Yates JR 3rd, Zheng Y. (2008) Regulation of microtubule assembly and organization in mitosis by the AAA+ ATPase Pontin. Mol. Biol. Cell, 19(7):3097–3110
    • Ito K, Arai R, Fusatomi E, Kamo-Uchikubo T, Kawaguchi S, Akasaka R, Terada T, Kuramitsu S, Shirouzu M, Yokoyama S. (2006) Crystal structure of the conserved protein TTHA0727 from Thermus thermophilus HB8 at 1.9 Å resolution: A CMD family member distinct from carboxymuconolactone decarboxylase (CMD) and AhpD. Protein Sci., 15(5):1187–1192
      doi: 10.1110/ps.062148506
      PubMed ID: 16597838
    • Tanaka Y, Tawaramoto-Sasanuma M, Kawaguchi S, Ohta T, Yoda K, Kurumizaka H, Yokoyama S. (2004) Expression and purification of recombinant human histones. Methods, 33(1):3–11
    • Kawaguchi S, Zheng Y. (2004) Characterization of a Drosophila centrosome protein CP309 that shares homology with Kendrin and CG-NAP. Mol. Biol. Cell, 15(1):37–45
    • Tanaka Y, Nureki O, Kurumizaka H, Fukai S, Kawaguchi S, Ikuta M, Iwahara J, Okazaki T, Yokoyama S. (2001) Crystal structure of the CENP-B protein-DNA complex: the DNA-binding domains of CENP-B induce kinks in the CENP-B box DNA. EMBO J., 20(23):6612–6618
    • Ura H, Nakai T, Kawaguchi S, Miyahara I, Hirotsu K, Kuramitsu S. (2001) Substrate recognition mechanism of thermophilic dual-substrate enzyme. J. Biochem. (Tokyo), 130(1):89–98
    • Kawaguchi S, Muller J, Linde D, Kuramitsu S, Shibata T, Inoue Y, Vassylyev DG, Yokoyama S. (2001) The crystal structure of the ttCsaA protein: an export-related chaperone from Thermus thermophilus. EMBO J., 20(3):562–569
    • Renault L, Kerjan P, Pasqualato S, Menetrey J, Robinson JC, Kawaguchi S, Vassylyev DG, Yokoyama S, Mirande M, Cherfils J. (2001) Structure of the EMAPII domain of human aminoacyl-tRNA synthetase complex reveals evolutionary dimer mimicry. EMBO J., 20(3):570–578
    • Ishijima J, Nakai T, Kawaguchi S, Hirotsu K, Kuramitsu S. (2000) Free energy requirement for domain movement of an enzyme. J. Biol. Chem., 275(25):18939–18945
    • Matsui I, Matsui E, Sakai Y, Kikuchi H, Kawarabayasi Y, Ura H, Kawaguchi S, Kuramitsu S, Harata K. (2000) The molecular structure of hyperthermostable aromatic aminotransferase with novel substrate specificity from Pyrococcus horikoshii. J. Biol. Chem., 275(7):4871–4879
    • Nakai T, Okada K, Akutsu S, Miyahara I, Kawaguchi S, Kato R, Kuramitsu S, Hirotsu K. (1999) Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex with maleate. Biochemistry, 38(8):2413–2424
    • Nobe Y, Kawaguchi S, Ura H, Nakai T, Hirotsu K, Kato R, Kuramitsu S. (1998) The novel substrate recognition mechanism utilized by aspartate aminotransferase of the extreme thermophile Thermus thermophilus HB8. J. Biol. Chem., 273(45):29554–29564
    • Kawaguchi S, Kuramitsu S. (1998) Thermodynamics and molecular simulation analysis of hydrophobic substrate recognition by aminotransferases. J. Biol. Chem., 273(29):18353–18364
    • Nakai T, Okada K, Kawaguchi S, Kato R, Kuramitsu S, Hirotsu K. (1998) Crystallization and preliminary X-ray characterization of aspartate aminotransferase from an extreme thermophile, Thermus thermophilus HB8. Acta Cryst., D54(Pt 5):1032–1034
    • Hiramatsu Y, Kato R, Kawaguchi S, Kuramitsu S. (1997) Cloning and characterization of the uvrD gene from an extremely thermophilic bacterium, Thermus thermophilus HB8. Gene, 199:77–82
    • Kawaguchi S, Nobe Y, Yasuoka J, Wakamiya T, Kusumoto S, Kuramitsu S. (1997) Enzyme flexibility: new concept in recognition of hydrophobic substrates. J. Biochem., 122(1):55–63
    • Kawaguchi S, Kuramitsu S. (1995) Separation of heat-stable proteins from Thermus thermophilus HB8 by two-dimensional electrophoresis. Electophoresis, 16:1060–1066
    • Kawaguchi S, Kuramitsu S. (1994) Homologus ligation. Trends Genet., 10(12):420
    • Miyazawa K, Kawaguchi S, Okamoto A, Kato R, Ogawa T, Kuramitsu S. (1994) Construction of aminotransferase chimeras and analysis of their substrate specificity. J. Biochem., 115(3):568–577

    Review articles

    • Kawaguchi S, Ng DT. (2007) SnapShot: ER-associated protein degradation pathways. Cell, 129(6):1230
    • Kanehara K, Kawaguchi S, Ng DT. (2007) The EDEM and Yos9p families of lectin-like ERAD factors. Semin Cell Dev. Biol., 18(6):743–750
    • Yokoyama S, Matsuo Y, Hirota H, Kigawa T, Shirouzu M, Kuroda Y, Kurumizaka H, Kawaguchi S, Ito Y, Shibata T, Kainosho M, Nishimura Y, Inoue Y, Kuramitsu S. (2000) Structural genomics projects in Japan. Prog. Biophys. Mol. Biol., 73(5):363–376
    • Kawaguchi S, Kuramitsu S. (1994) Mechanism of enzyme reaction. (in Japanese). Tanpakushitsu Kakusan Koso, 39(7):1083–1090

須山 律子

特任助教

2003年、九州大学大学院医学研究科にて博士号(医学)取得。2000–2007年、欧州 分子生物学研究所(EMBL)Anne Ephrussi 博士、2007–2009年、同研究所Asifa Akhtar 博士、2009–2012年、京都大生命科学研究科上村匡博士研究室、2012–18年沖縄科学技術大学院大学 Nicholas Luscombe 博士研究室を経て、2018年より現職。

  • 業績一覧
    • Suyama R, Cetraro N, Yew J Y, Kai T. (2023) Microbes control Drosophila germline stem cell increase and egg maturation through hormonal pathways. Commun. Biol., 6:Article number: 1287
      doi: 10.1038/s42003-023-05660-x
    • Lin Y, Suyama R, Kawaguchi S, Iki T, Kai T. (2023) Tejas functions as a core component in nuage assembly and precursor processing in Drosophila piRNA biogenesis. J. Cell Biol., 222(10):e202303125
      doi: 10.1083/jcb.202303125
      PubMed ID: 37555815
    • Suyama R, Kai T. (2021) Review: Non-membranous RNP condensates control the fate of germline cells. Jikken-igaku special issue, 39(10)
      (equal corresponding author)
      ISBN: 978-4-7581-0395-4
    • Wang K, Tomura R, Chen W, Kiyooka M, Ishizaki H, Aizu T, Minakuchi Y, Seki M, Suzuki Y, Omotezako T, Suyama R, Masunaga A, Plessy C, Luscombe NM, Dantec C, Lemaire P, Itoh T, Toyoda A, Nishida H, Onuma TA. (2020) A genome database for a Japanese population of the larvacean Oikopleura dioica. Dev. Growth Differ., 62(6):450-461
      doi: 10.1111/dgd.12689
    • Ilsley GR*, Suyama R*, Noda T, Satoh N, Luscombe NM. (2020) Finding cell-specific expression patterns in the early Ciona embryo with single-cell RNA-seq. Sci. Rep., 10(1):4961
      doi: 10.1038/s41598-020-61591-1
    • Suyama R. (2015) Meeting report for single cell genomics conference. Jikken-Igaku, 33(1):44–45
    • Satoh D*, Suyama R*, Kimura K, Uemura T. (2012) High-resolution in vivo imaging of regenerating dendrites of Drosophila sensory neurons during metamorphosis: local filopodial degeneration and heterotypic dendrite-dendrite contacts. Genes to Cells, 12:939–951
      equally contribution (*)
      doi: 10.1111/gtc.12008
    • Vaquerizas JM*, Suyama R*, Kind J*, Miura K, Luscombe NM, Akhtar A. (2010) Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet., 6(2):e1000846
      equally contribution (*)
      doi: 10.1371/journal.pgen.1000846
    • Suyama R*, Jenney A*, Curado S*, Ephrussi A. (2009) The actin binding protein Lasp promotes Oskar accumulation at the posterior pole of the Drosophila embryo. Development, 136:95–105
      equally contribution (*)
      doi: 10.1242/dev.027698
    • Arima K, Umeshita-Suyama R, Sakata Y, Akaiwa M, Mao XQ, Enomoto T, Dake Y, Shimazu S, Yamashita T, Sugawara N, Brodeur S, Geha R, Puri RK, Sayegh MH, Adra CN, Hamasaki N, Hamasaki N, Hopkin JM, Shirakawa T, Izuhara K. (2002) Upregulation of IL-13 concentration in vivo by the IL-13 variant associated with bronchial asthma. J. Allergy Clin. Immunol., 109(6):980–987
      doi: 10.1067/mai.2002.124656
    • Umeshita-Suyama R, Sugimoto R, Akaiwa M, Arima K, Hamasaki N, Izuhara K. (2000) Characterization of IL-4 and IL-13 signals dependent on the human IL-13 receptor α chain 1. Int. Immunol., 12(11):1499–1509
    • Ohshima K, Akaiwa M, Umeshita R, Suzumiya J, Izuhara K, Kikuchi M. (2001) Interleukin-13 and Interluekin-13 receptor in Hodgkin’s disease: possible autocrine and involvement in fibrosis. Histopathology, 38:368–375
    • Akaiwa M, Yu B, Umeshita R, Terada N, Suto H, Koga T, Arima K, Matsushita S, Saito H, Ogawa H, Furue M, Hamasaki N, Ohshima K, Izuhara K. (2001) Localization of Human Interleukin-13 Receptor in Non Hematopoietic Cells. Cytokine, 13:75–84
    • Heinzmann A, Mao X-Q, Akaiwa M, Kremor RT, Gao P-S, Ohshima K, Umeshita R, Abe Y, Braun S, Yamashita, T, Roberts MH, Sugimoto R, Arima K, Arinobu Y, Yu B, Kruse S, Enomoto T, Dake Y, Kawai M, Shimazu S, Sasaki S, Addra CN, Hamasaki N, Izuhara K, Shirakawa T, Hopkin JM. (2000) Genetic variants of IL-13 signaling and human asthma and atopy. Human Molecular genetics, 9:549–559
    • Izuhara K, Umeshita R, Akaiwa M, Shirakawa T, Deichmann A, Arima K, Yu B, Hamasaki N, Hopkin JM. (2000) Recent advances in understanding how interleukin-13 signals are involved in pathogenesis of bronchial asthma (review). , :505–512
    • Izuhara K, Sugimoto R, Akaiwa M, Umeshita R, Arima K, Bin Yu, Hamasaki N. (2000) Signal transduction of IL-4 and IL-13: its correlation with the pathogenesis of allergic diseases. Molecular target for Hematological Malignancies and Cancer, :95–102
    • Umeshita R, Izuhara K. (2000) IL-13 receptor (review in Japanese). RINSHO MEN-EKI, 34:608–612
    • Sawa M, Imaeda Y, Hiratake J, Fujii R, Umeshita R, Watanabe M, Kondo H, Oda J. (1998) Toward the antibody-catalyzed chemiluminescence: Design and synthesis of hapten. Bioorg. Med. Chem., 8:647–652
    • Nakatani T, Umeshita R, Hiratake J, Shinzaki A, Suzuki T, Oda J. (1994) Characterization of a catalytic antibody for stereoselective ester hydrolysis a catalytic residue and mode of product inhibition. Bioorg. Med. Chem., 2:457–468
    • Nakatani T, Hiratake J, Shinzaki A, Umeshita R, Suzuki T, Nishioka T, Nakajima H, Oda J. (1993) A mode of Product inhibition of Esterolytic Antibody. , 34(31):4945–4948

顔 宏哲

特任研究員

松井 将也

大学院生 D5/D5

一色 和奏

大学院生 D4/D5(主:生命機能、副:卓越大学院/JSPS DC1)

徐 鑫

大学院生 D4/D5

IKELE Chinyere Marycynthia

大学院生 D2/D5(国費留学生)

南 陽菜乃

大学院生 D2/D5

秦 海添

大学院生 D2/D5

趙 淼淼

大学院生 D1/D5

村上 直生

大学院生 D1/D5

鄭 静瀾

研究生

柳澤 智里

技術補佐員

森口 未奈子

技術補佐員