直線近似の求め方-04

\( \Large \displaystyle a \displaystyle \sum_{i=1}^n x_i^2 +b \displaystyle \sum_{i=1}^n x_i = \displaystyle \sum_{i=1}^n x_i y_i \)

\( \Large \displaystyle a \displaystyle \sum_{i=1}^n x_i + nb = \displaystyle \sum_{i=1}^n y_i \)

まずは,先ほどの方程式の一式に,\( \Large \displaystyle \displaystyle \sum_{i=1}^n x_i \),を,二式に,\( \Large \displaystyle \displaystyle \sum_{i=1}^n x_i^2 \),をかけると,

\( \Large \displaystyle a \displaystyle \sum_{i=1}^n x_i^2 \cdot \displaystyle \sum_{i=1}^n x_i +b \left(\displaystyle \sum_{i=1}^n x_i \right)^2= \displaystyle \sum_{i=1}^n x_i y_i \cdot \displaystyle \sum_{i=1}^n x_i\)

\( \Large \displaystyle a \displaystyle \sum_{i=1}^n x_i \cdot \displaystyle \sum_{i=1}^n x_i^2+ nb \displaystyle \sum_{i=1}^n x_i^2= \displaystyle \sum_{i=1}^n y_i \cdot \displaystyle \sum_{i=1}^n x_i^2\)

\( \Large \displaystyle b\left\{\left(\displaystyle \sum_{i=1}^n x_i \right)^2 - nb \displaystyle \sum_{i=1}^n x_i^2 \right\} = \displaystyle \sum_{i=1}^n x_i y_i \cdot \displaystyle \sum_{i=1}^n x_i - \displaystyle \sum_{i=1}^n y_i \cdot \displaystyle \sum_{i=1}^n x_i^2 \)

\( \Large \displaystyle b
= \frac{ \displaystyle \sum_{i=1}^n x_i y_i \cdot \displaystyle \sum_{i=1}^n x_i - \displaystyle \sum_{i=1}^n y_i \cdot \displaystyle \sum_{i=1}^n x_i^2}
{\left(\displaystyle \sum_{i=1}^n x_i \right)^2 - nb \displaystyle \sum_{i=1}^n x_i^2 } \)

となり,b,を求めることができました.

次に,先ほどの方程式の一式に,n,を,二式に,\( \Large \displaystyle \displaystyle \sum_{i=1}^n x_i \),をかけると,

\( \Large \displaystyle na \displaystyle \sum_{i=1}^n x_i^2 +nb \displaystyle \sum_{i=1}^n x_i = n \displaystyle \sum_{i=1}^n x_i y_i \)

\( \Large \displaystyle a \left(\displaystyle \sum_{i=1}^n x_i \right)^2+ nb \displaystyle \sum_{i=1}^n x_i = \displaystyle \sum_{i=1}^n x_i \displaystyle \sum_{i=1}^n y_i \)

\( \Large \displaystyle a \left\{ n \displaystyle \sum_{i=1}^n x_i^2 - \left(\displaystyle \sum_{i=1}^n x_i \right)^2 \right\} = n \displaystyle \sum_{i=1}^n x_i y_i-\displaystyle \sum_{i=1}^n x_i \displaystyle \sum_{i=1}^n y_i \)

\( \Large \displaystyle a = \frac{ n \displaystyle \sum_{i=1}^n x_i y_i-\displaystyle \sum_{i=1}^n x_i \displaystyle \sum_{i=1}^n y_i}{n \displaystyle \sum_{i=1}^n x_i^2 - \left(\displaystyle \sum_{i=1}^n x_i \right)^2} \)

となって,無事,a,bを求めることができました.

もう少し,a,をいじってみると,

分子:

\( \Large \displaystyle n \displaystyle \sum_{i=1}^n x_i y_i-\displaystyle \sum_{i=1}^n x_i \displaystyle \sum_{i=1}^n y_i \)

\( \Large \displaystyle = n \displaystyle \sum_{i=1}^n x_i y_i-\displaystyle \sum_{i=1}^n x_i \displaystyle \sum_{i=1}^n y_i + \displaystyle \sum_{i=1}^n x_i \displaystyle \sum_{i=1}^n y_i - \displaystyle \sum_{i=1}^n x_i \displaystyle \sum_{i=1}^n y_i\)

\( \Large \displaystyle = n \displaystyle \sum_{i=1}^n x_i y_i-n \bar{x} \displaystyle \sum_{i=1}^n y_i + n^2 \bar{x} \bar{y} - n \displaystyle \sum_{i=1}^n x_i \bar{y}\)

\( \Large \displaystyle = n \displaystyle \sum_{i=1}^n (x_i y_i- \bar{x} y_i- x_i \bar{y} + \bar{x} \bar{y} ) \)

\( \Large \displaystyle = n \displaystyle \sum_{i=1}^n (x_i - \bar{x})( y_i - \bar{y} ) \)

分母:

\( \Large \displaystyle n \sum_{i=1}^n x_i^2 - \left(\displaystyle \sum_{i=1}^n x_i \right)^2 \)

\( \Large = \displaystyle n \sum_{i=1}^n x_i^2 - n \bar{x} \displaystyle \sum_{i=1}^n x_i \)

\( \Large = \displaystyle n \sum_{i=1}^n x_i^2 - 2n \bar{x} \displaystyle \sum_{i=1}^n x_i + n \bar{x} \displaystyle \sum_{i=1}^n x_i \)

\( \Large = \displaystyle n \sum_{i=1}^n x_i^2 - 2n \bar{x} \displaystyle \sum_{i=1}^n x_i + n^2 \bar{x}^2 \)

\( \Large = \displaystyle n \sum_{i=1}^n \left( x_i^2 - 2n \bar{x} x_i + \bar{x}^2 \right) \)

\( \Large = \displaystyle n \sum_{i=1}^n \left( x_i - \bar{x} \right)^2 \)

したがって,

\( \Large a =\frac{ \displaystyle \sum_{i=1}^n (x_i - \bar{x})( y_i - \bar{y} )}{ \displaystyle \sum_{i=1}^n \left( x_i - \bar{x} \right)^2} \)

\( \Large \displaystyle a =\frac{ Cov(X,Y) }{ \sigma_X^2} \)

もしくは,

\( \Large \displaystyle a =\frac{ S_{xy} }{ S_x^2} \)

と記述することができます.

bは,ここ,より,

\( \Large \displaystyle b = \overline{y} - a \overline{x} \)

なので,書き換えると

\( \Large \displaystyle b = \overline{y} - \frac{ S_{xy} }{ S_x^2} \overline{x} \)

となります.

次に,全体のばらつきからの決定係数の求め方,を考えましょう.

l t r