回路-09-4

RC直列交流回路を真面目に解く - 電圧を主体に考える

RC直列に並んだ交流回路電圧を主体にまじめに考えます.式は,

\(\Large \displaystyle V = V_0 \cdot e^{j \omega t} = V_R (t)+ V_C (t) \)

\(\Large \displaystyle V_R (t) = R \cdot I(t) \)

\(\Large \displaystyle I(t) = C \cdot \frac{d}{dt} V_C (t) \)

となるので,

\(\Large \displaystyle V = R \cdot C \cdot \frac{d}{dt} V_C + V_C \)

となります.したがって,

\(\Large \displaystyle R \cdot C \cdot \frac{d}{dt} V_C (t) + V_C (t) = V_0 \cdot e^{j \omega t} \)

\(\Large \displaystyle \frac{d}{dt} V_C (t) =- \frac{1}{RC} V_C (t) + \frac{1}{RC}V_0 \cdot e^{j \omega t} \)

 

定数変化法を用いて,

\(\Large \displaystyle V_C (t) = A_0 \cdot e^{ - \frac{1}{RC} t} \)

\(\Large \displaystyle \frac{d}{dt} V_C (t) = A_0' \cdot e^{ - \frac{1}{RC} t} \color{blue}{- \frac{1}{RC}A_0 \cdot e^{ - \frac{1}{RC} t}} \)

\(\Large \displaystyle = \color{blue}{- \frac{1}{RC} V_C (t) } + \frac{1}{RC}V_0 \cdot e^{j \omega t} \)

\(\Large \displaystyle A_0' \cdot e^{ - \frac{1}{RC} t} = \frac{1}{RC}V_0 \cdot e^{j \omega t} \)

\(\Large \displaystyle A_0' = \frac{1}{RC}V_0 \cdot e^{(\frac{1}{RC} + j \omega) t} \)

\(\Large \displaystyle A_0 = \frac{1}{RC}V_0 \cdot \frac{1}{\frac{1}{RC} + j \omega}\cdot e^{(\frac{1}{RC} + j \omega) t} + D \)

\(\Large \displaystyle V_C (t) = \left( \frac{1}{RC}V_0 \cdot \frac{1}{\frac{1}{RC} + j \omega}\cdot e^{(\frac{1}{RC} + j \omega) t} + D\right) \cdot e^{ - \frac{1}{RC} t} \)

\(\Large \displaystyle = \frac{1}{RC}V_0 \cdot \frac{1}{\frac{1}{RC} + j \omega}\cdot e^{ j \omega t} + D \cdot e^{ - \frac{1}{RC} t} \)

\(\Large \displaystyle = V_0 \cdot \frac{1}{1 + j \omega RC}\cdot e^{ j \omega t} + D \cdot e^{ - \frac{1}{RC} t} \)

 

ここで,初期値は,

\(\Large \displaystyle V_C(0) = V_0; \)

となります.その理由は,

\(\Large \displaystyle R \cdot C \cdot \frac{d}{dt} V_C + V_C = V_0 \ e^{j \omega t} \)

電流の初期値は,I(0)=0,として,

\(\Large \displaystyle I(0) = 0 = C \left.\frac{d}{dt} V_C \right|_{t=0} ; \)

元の微分方程式に戻すと

\(\Large \displaystyle R \cdot C \cdot \left. \frac{d}{dt} V_C \right|_{t=0} + V_C(0) = V_0 \ e^{j \omega \cdot 0} = V_0 \)

となり,したがって,

\(\Large \displaystyle V_C(0) = V_0 \)

となります.

 

したがって,

\(\Large \displaystyle R \cdot C \cdot \frac{d}{dt} V_C (t) + V_C (t) = V_0 \cdot e^{j \omega t} \)

\(\Large \displaystyle \frac{d}{dt} V_C (t) =- \frac{1}{RC} V_C (t) + \frac{1}{RC}V_0 \cdot e^{j \omega t} \)

\(\Large \displaystyle V_C (t) = \frac{1}{RC}V_0 \cdot \frac{1}{\frac{1}{RC} + j \omega}\cdot e^{ j \omega t} + D \cdot e^{ - \frac{1}{RC} t} \)

\(\Large \displaystyle V_C(0)=V_0; \)

\(\Large \displaystyle V_C(0)=V_0 = \frac{1}{RC}V_0 \cdot \frac{1}{\frac{1}{RC} + j \omega}\cdot e^{ j \omega \cdot 0} + D \cdot e^{ - \frac{1}{RC} \cdot 0} \)

\(\Large \displaystyle = V_0 \cdot \frac{1}{1 + j \omega RC} + D = V_0 \)

\(\Large \displaystyle D = V_0-V_0 \cdot \frac{1}{1 + j \omega RC} \)

\(\Large \displaystyle V_C (t) = \left( V_0 \cdot \frac{1}{1 + j \omega RC}\cdot e^{(\frac{1}{RC} + j \omega) t} +V_0- V_0 \cdot \frac{1}{1 + j \omega RC} \right) \cdot e^{ - \frac{1}{RC} t} \)

\(\Large \displaystyle =V_0 \cdot \frac{1}{1 + j \omega RC} \left( e^{j \omega t} - e^{ - \frac{1}{RC} t}\right) + V_0 \cdot e^{ - \frac{1}{RC} t}  \)

\(\Large \displaystyle I(t) = C \cdot \frac{d}{dt} V_C (t) \)

\(\Large \displaystyle =V_0 \cdot \frac{C}{1 + j \omega RC} \left( j \omega \ e^{j \omega t} + \frac{1}{RC} e^{ - \frac{1}{RC} t}\right) - V_0 \frac{1}{RC} e^{ - \frac{1}{R} t} \)

\(\Large \displaystyle =V_0 \cdot \frac{j \omega C}{1 + j \omega RC} e^{j \omega t} + \frac{1}{1 + j \omega RC}\frac{1}{R} e^{ - \frac{1}{RC} t} - V_0 \frac{1}{R} e^{ - \frac{1}{RC} t} \)

\(\Large \displaystyle =V_0 \cdot \frac{j \omega C}{1 + j \omega RC} e^{j \omega t} + V_0 \frac{1 - 1 - j \omega RC}{1 + j \omega RC}\frac{1}{R} e^{ - \frac{1}{RC} t} \)

\(\Large \displaystyle =V_0 \cdot \frac{j \omega C}{1 + j \omega RC} e^{j \omega t} + V_0\frac{ - j \omega C}{1 + j \omega RC} e^{ - \frac{1}{RC} t} \)

\(\Large \displaystyle =V_0 \cdot \frac{j \omega C}{1 + j \omega RC} \left( e^{j \omega t} - e^{ - \frac{1}{RC} t} \right) \)

 

微分して電流にしてから初期値を入れると,

\(\Large \displaystyle I(t) = C \cdot \frac{d}{dt} V_C (t) \)

\(\Large \displaystyle =V_0 \cdot \frac{j \omega C}{1 + j \omega RC}\cdot e^{ j \omega t} - \frac{D}{R} \cdot e^{ - \frac{1}{RC} t} \)

\(\Large \displaystyle I(0)=0; \)

\(\Large \displaystyle I(0) = V_0 \cdot \frac{j \omega C}{1 + j \omega RC}\cdot e^{ j \omega \cdot 0} - \frac{D}{R} \cdot e^{ - \frac{1}{RC} \cdot 0} \)

\(\Large \displaystyle V_0 \cdot \frac{j \omega C}{1 + j \omega RC} =\frac{D }{R} \)

\(\Large \displaystyle D = V_0 \cdot \frac{j \omega RC}{1 + j \omega RC} \)

\(\Large \displaystyle I(t) = V_0 \cdot \frac{j \omega C}{1 + j \omega RC}\cdot (e^{ j \omega t} - e^{ - \frac{1}{RC} t}) \)

\(\Large \displaystyle = V_0 \cdot \frac{j \omega C}{1+j \omega RC } \left( e^{ j \omega t} - e^{- \frac{1}{RC}t} \right) \)

\(\Large \displaystyle = V_0 \cdot \frac{j \omega C + \omega^2 R C^2}{1+ (\omega RC)^2 } \left( e^{ j \omega t} - e^{- \frac{1}{RC}t} \right) \)

\(\Large \displaystyle = V_0 \cdot \frac{ \frac{j}{\omega C} + R }{\frac{1}{ (\omega C)^2}+ R^2 } \left( e^{ j \omega t} - e^{- \frac{1}{RC}t} \right) \)

となり,一致します.

 

後の展開は同じですが,きちんと書くと,

\(\Large \displaystyle = V_0 \cdot \frac{R + \frac{j}{ \omega C}}{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}} \cdot \frac{1 }{{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}}} \cdot \left( e^{ j \omega t} - e^{- \frac{1}{ RC} t} \right) \) 

ここで,複素数の項を指数に置き換える.

\(\Large \displaystyle cos \ \theta = \frac{R }{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}}\) 

\(\Large \displaystyle j \cdot sin \ \theta = \frac{ \frac{j}{ \omega C}}{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}}\) 

\(\Large \displaystyle e^{ j \ \theta} =cos \ \theta + j \cdot sin \ \theta \) 

より,

\(\Large \displaystyle \frac{R + \frac{j}{ \omega C}}{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}} = e^{ j \ \theta} \) 

ここで,

\(\Large \displaystyle tan \ \theta = \frac{1} {\omega RC} \) 

となります.したがって,

\(\Large \displaystyle I(t) = V_0 \cdot \frac{R + \frac{j}{ \omega C}}{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}} \cdot \frac{1 }{{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}}} \cdot \left( e^{ j \omega t} - e^{- \frac{1}{ RC} t} \right) \)

\(\Large \displaystyle = V_0 \cdot e^{ j \ \theta} \cdot \frac{1 }{{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}}} \cdot \left( e^{ j \omega t} - e^{- \frac{1}{ RC} t} \right)\) 

\(\Large \displaystyle = V_0 \cdot \frac{1 }{{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}}} \cdot \left\{ e^{ j (\omega t + \theta)} - e^{ j \ \theta} \cdot e^{- \frac{1}{ RC} t} \right\}\) 

となります.ここで,三角関数に戻すために,虚数部分のみ取り出すと,

\(\Large \displaystyle Im [ I(t) ] = Im \left[V_0 \cdot \frac{1 }{{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}}} \cdot e^{ j (\omega t + \theta)} \right]
- Im \left[V_0 \cdot \frac{1 }{{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}}} \cdot e^{ j \ \theta} \cdot e^{- \frac{1}{ RC} t} \right] \)

\(\Large \displaystyle = V_0 \cdot \frac{1 }{{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}}} \cdot sin (\omega t + \theta)
- V_0 \cdot \frac{1 }{{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}}} \cdot sin \ \theta \cdot e^{- \frac{1}{ RC} t} \)

十分な時間が経てば,第二項は0となるので,

\(\Large \displaystyle I(t) \sim \frac{V_0 }{{ \sqrt{R^2 + \frac{1}{ (\omega C)^2 }}}} \cdot sin (\omega t + \theta) \)

\(\Large \displaystyle \theta = tan^{-1} \ \frac{1} {\omega RC} \) 

となり,インピーダンスを用いた結果と一致します. 

次は,09-5.RC直列交流回路をラプラス変換で真面目に解く - 電圧を主体に考える,です.

 

戻る 

l tr