三角関数の公式_オイラーの公式を使って
加法定理
\( \Large     \displaystyle  \begin{eqnarray} \boldsymbol{ \LARGE {sin \ (x \pm y) }}
  &=&  Im \left[ e^{i(x \pm y)} \right]   \\
  &=& 
Im \left[ e^{ix} \cdot e^{ \pm iy} \right] \\
&=&  Im \left[ ( cos \ x +i \ sin \ x) \times \{ cos ( \pm y) + i \ sin ( \pm y) \}  \right] \\
&=&  Im \left[ ( cos \ x \cdot cos \ y \mp  sin \ x \cdot sin \ y ) + i( sin \ x \cdot cos \ y \pm  cos \ x \cdot sin \ y ) \right] \\
&=&   \boldsymbol{ \LARGE {sin \ x \cdot cos \ y \pm  cos \ x \cdot sin \ y }}
\end{eqnarray} \)
\( \Large     \displaystyle  \begin{eqnarray} \boldsymbol{ \LARGE {cos \ (x \pm y) }}
  &=&  Re \left[ e^{i(x \pm y)} \right]   \\
&=& 
Re \left[ e^{ix} \cdot e^{ \pm iy} \right] \\
&=&  Re \left[ ( cos \ x +i \ sin \ x) \times \{ cos ( \pm y) + i \ sin ( \pm y) \}  \right] \\
&=&  Re \left[ ( cos \ x \cdot cos \ y \mp  sin \ x \cdot sin \ y ) + i( sin \ x \cdot cos \ y \pm  cos \ x \cdot sin \ y ) \right] \\
&=&\boldsymbol{ \LARGE {cos \ x \cdot cos \ y \mp  sin \ x \cdot sin \ y}}
\end{eqnarray} \)
倍角の公式
二倍角
\( \Large     \displaystyle  \begin{eqnarray} \boldsymbol{ \LARGE {sin \ (2 \theta) }}
  &=&  Im \left[ e^{2 i  \theta)} \right]   \\
&=& 
Im \left[ e^{i  \theta} \cdot e^{ i  \theta} \right] \\
&=&  Im \left[ ( cos \  \theta +i \ sin \  \theta) ^2 \right] \\
&=&  Im \left[ ( cos^2  \theta  + 2 i \ sin  \theta \ cos  \theta - sin^2  \theta ) \right] \\
&=& \boldsymbol{ \LARGE {2 \ sin  \theta \ cos  \theta}}
\end{eqnarray} \)
\( \Large     \displaystyle  \begin{eqnarray} \boldsymbol{ \LARGE {cos \ (2 \theta) }}
  &=&  Re \left[ e^{2 i  \theta)} \right]   \\
&=& 
Re \left[ e^{i  \theta} \cdot e^{ i  \theta} \right] \\
&=&  Re \left[ ( cos \  \theta +i \ sin \  \theta) ^2 \right] \\
&=&  Re \left[ ( cos^2  \theta  + 2 i \ sin  \theta \ cos  \theta - sin^2  \theta ) \right] \\
&=& \boldsymbol{ \LARGE {cos^2  \theta   - sin^2  \theta}}
\end{eqnarray} \)
三倍角
\( \Large     \displaystyle  \begin{eqnarray} \boldsymbol{ \LARGE {sin \ (3 \theta) }}
  &=&  Im \left[ e^{3 i  \theta)} \right]   \\
  &=& 
  Im \left[ e^{i  \theta} \cdot e^{ i  \theta}  \cdot e^{ i  \theta} \right] \\
  &=&  Im \left[ ( cos \  \theta +i \ sin \  \theta) ^3 \right] \\
  &=&  Im \left[ ( cos^3  \theta  + 3 i \ sin  \theta \ cos^2  \theta - 3  \ sin^2  \theta \ cos  \theta- i \ sin^3  \theta ) \right] \\
  &=&   3 \ sin  \theta \ cos^2  \theta - sin^3  \theta \\
  
  &=&   3 \ sin  \theta \ cos^2  \theta - sin^3  \theta +3 \ sin^2  \theta \ sin  \theta - 3 \ sin^2  \theta \ sin  \theta \\
  &=&   3 \ sin  \theta \ (sin^2 \theta + cos^2  \theta) - sin^3  \theta  - 3 \ sin^3  \theta  \\
  &=& \boldsymbol{ \LARGE {3 \ sin  \theta -4 \ sin^3  \theta }}
  \end{eqnarray} \)
\( \Large     \displaystyle  \begin{eqnarray} \boldsymbol{ \LARGE {cos \ (3 \theta) }}
  
  &=&  Re \left[ e^{3 i  \theta)} \right]   \\
  &=& 
  Re \left[ e^{i  \theta} \cdot e^{ i  \theta}  \cdot e^{ i  \theta} \right] \\
  &=&  Re \left[ ( cos \  \theta +i \ sin \  \theta) ^3 \right] \\
  &=&  Re \left[ ( cos^3  \theta  + 3 i \ sin  \theta \ cos^2  \theta - 3  \ sin^2  \theta \ cos  \theta- i \ sin^3  \theta ) \right] \\
  &=& cos^3  \theta   - 3  \ sin^2  \theta \ cos  \theta \\
  &=& cos^3  \theta   - 3  \ sin^2  \theta \ cos  \theta - 3  \ cos^2  \theta \ cos  \theta  + 3  \ cos^2  \theta \ cos  \theta \\
  &=& cos^3  \theta   - 3  \ (sin^2 \theta  + cos^2 \theta)  \ cos  \theta - 3  \ cos^2  \theta \ cos  \theta  + 3  \ cos^3   \\ 
  &=& \boldsymbol{ \LARGE {4 \ cos^3  \theta   - 3   \ cos  \theta}}
\end{eqnarray} \)
次は,和積公式,