15ー1ー10.ステップ関数(RLC回路)
・α = ω0
\(\Large \displaystyle F(s) = \frac{V_0}{L} \frac{1}{s^2 + 2 \ \alpha \ s + \omega_0^2} \)
\(\Large \displaystyle = \frac{V_0}{L} \frac{1}{s^2 + 2 \ \alpha \ s + \alpha^2} \)
\(\Large \displaystyle = \frac{V_0}{L} \frac{1}{( s+ \alpha)^2} \)
\(\Large \displaystyle \mathfrak{ L} \left[ t \ e^{-at} \right] = \frac{1}{(s+a)^2} \)
となるので,逆変換して,
\(\Large \displaystyle F(s) = \frac{V_0}{L} \frac{1}{( s+ \alpha)^2} \)
\(\Large \displaystyle I(t) = \frac{V_0}{L} \left( t \ e^{- \alpha t}\right) \)
となり,通常の解法,と一致します.