15ー1ー08.ステップ関数(RLC回路)
・α < ω0
\(\Large \displaystyle F(s) = \frac{V_0}{L} \frac{1}{\cdot s^2 + 2 \alpha \cdot s + \omega_0^2} \)
分母に注目すると,
\(\Large \displaystyle s^2 + 2 \ \alpha \ s + \omega_0^2 = ( s + \alpha)^2 - \alpha^2 + \omega_0^2 \)
\(\Large \displaystyle = ( s + \alpha)^2 + \omega_d^2 \)
\(\Large \displaystyle (\omega_d = \sqrt{\omega_0^2 - \alpha^2}) \)
とすると,
\(\Large \displaystyle F(s) = \frac{V_0}{L} \frac{1}{s^2 + 2 \ \alpha \ s + \omega_0^2} = \frac{V_0}{L} \frac{1}{( s + \alpha)^2 + \omega_d^2} \)
\(\Large \displaystyle \mathfrak{ L} \left[ e^{ \alpha t} \cdot sin \ \beta t \right] = \frac{ \beta }{(s- \alpha)^2 + \beta^2} \)
となるので,
\(\Large \displaystyle \mathfrak{ L}^{-1} \left[ \frac{ \beta }{(s- \alpha)^2 + \beta^2 } \right] = e^{ \alpha t} \cdot sin \ \beta t \)
\(\Large \displaystyle \mathfrak{ L}^{-1} \left[ \frac{ \beta }{(s + \alpha)^2 + \beta^2} \right] = e^{ - \alpha t} \cdot sin \ \beta t \)
となるので,
\(\Large \displaystyle F(s) = \frac{V_0}{L} \frac{1}{( s + \alpha)^2 + \omega_d^2} \)
\(\Large \displaystyle I(t) = \mathfrak{ L}^{-1} \left[ F(s) \right] = \frac{V_0}{L} \ \frac{1}{\omega_d} \cdot e^{ - \alpha t} \cdot sin \ (\omega_d \ t ) \)
となり,通常の解法,と一致します.
次は,α > ω0,です.