球体の発熱による温度分布-06

 

中心の温度

\(\Large \Delta T_{in} \vert_{r=0} = \frac{p}{6 \ \kappa}(3 \ R^2-0^2) \)

\(\Large \hspace{57pt} = \frac{p}{2 \ \kappa} R^2 \)

\(\Large \hspace{57pt} = \frac{1}{2 \ \kappa} R^2\frac{3 \ P}{4 \pi \ R^3}\)

\(\Large \hspace{57pt} = \frac{3 \ P}{8 \pi \kappa R}\)

\(\Large \hspace{57pt} = \frac{3 \ P}{4 \pi \kappa L}\)

 

平均温度

r=0 to Rまでの平均を取ればいいので,

\(\Large T_{in} = \frac{p}{6 \ \kappa}(3 \ R^2-r^2) + R.T. \)

\(\Large <T_{in}> = \frac{p}{6 \ \kappa} \frac{ \displaystyle \int_{0 }^{ R } (3 \ R^2-r^2) dr}{\displaystyle \int_{0 }^{ R }dr} \)

\(\Large \hspace{47pt} = \frac{p}{6 \ \kappa} \frac{[ (3 \ R^2 \cdot r-\frac{1}{3}r^3)]_0 ^R}{R} \)

\(\Large \hspace{47pt} = \frac{p}{6 \ \kappa} \frac{ (3 \ R^3 -\frac{1}{3}R^3)}{R} \)

\(\Large \hspace{47pt} = \frac{p}{6 \ \kappa} \frac{ 8}{3}R^2 \)

\(\Large \hspace{47pt} = \frac{1}{6 \ \kappa} \frac{ 8}{3}R^2\frac{3 \ P}{4 \pi \ R^3} \)

\(\Large \hspace{47pt} = \frac{P}{3 \pi \kappa \ R} \)

\(\Large \hspace{47pt} = \frac{2 \ P}{3 \pi \kappa \ L} \)

 

となります.

次に,球の内外で熱伝導率が異なる場合,を考えていきましょう.

 

l tr