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Abstract 16 

 17 

The reaction-diffusion model presented by Alan Turing has recently been supported by experimental 18 

data and accepted by most biologists. However, scientists have recognized shortcomings when the 19 

model is used as the working hypothesis in biological experiments, particularly in studies in which 20 

the underlying molecular network is not fully understood. To address some such problems, this 21 

report proposes a new version of the Turing model. 22 

This improved model is not represented by partial differential equations, but rather by the shape of 23 

an activation-inhibition kernel. Therefore, it is named the kernel-based Turing model (KT model). 24 

Simulation of the KT model with kernels of various shapes showed that it can generate all standard 25 

variations of the stable 2D patterns (spot, stripes and network), as well as some complex patterns that 26 

are difficult to generate with conventional mathematical models. The KT model can be used even 27 

when the detailed mechanism is poorly known, as the interaction kernel can often be detected by a 28 

simple experiment and the KT model simulation can be performed based on that experimental data. 29 

These properties of the KT model complement the shortcomings of conventional models and will 30 

contribute to the understanding of biological pattern formation. 31 
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 Background 41 

 42 

The reaction-diffusion (RD) model presented by Alan Turing in 1952[1] is a theoretical mechanism 43 

to explain how spatial patterns form autonomously in an organism. In his classic paper, Turing 44 

examined the behaviour of a system in which two diffusible substances interact with each other, and 45 

found that such a system is able to generate a spatially periodic pattern even from a random or 46 

almost uniform initial condition. Turing hypothesized that the resulting wavelike patterns are the 47 

chemical basis of morphogenesis. 48 

 49 

Although Turing’s theory was not sufficiently supported by experimental evidence for many years[2], 50 

it has since been adapted by many mathematical researchers who showed that a wide variety of 51 

patterns seen in organisms can be reproduced by the RD model[3, 4]. Meinhardt and Gierer stated 52 

that the condition of “local activation with long-range inhibition (LALI)” is sufficient for stable 53 

pattern formation [5]. This indication was quite important because it suggested that other effects on 54 

cells (for example, cell migration, physical stress, and neural signals) could replace the effect of 55 

diffusion in the original Turing model. Many different models have been presented to account for 56 

situations in which diffusion might not occur [6-9]. However, in all cases, LALI is the anticipated set 57 

of conditions sufficient to form the periodic pattern, and the pattern-formation ability is similar. 58 

Therefore, these models are also called LALI models[10]. 59 

 60 

The importance of the Turing model is obvious[11], in that it provided an answer to the fundamental 61 

question of morphogenesis: “how is spatial information generated in organisms?” However, most 62 

experimental researchers were sceptical until the mid-90s because little convincing evidence had 63 

been presented[2]. In 1991, two groups of physicists succeeded in generating the Turing patterns in 64 

their artificial systems, which showed for the first time that the Turing wave is not a fantasy but a 65 

reality in science[12, 13]. Four years later, it was reported that the stripes of colour on the skin of 66 

some tropical fishes are dynamically rearranged during their growth in accordance with Turing 67 

model predictions[14, 15]. Soon after, convincing experimental evidence claiming the involvement 68 

of a Turing mechanism in development has been reported[16] [17-19], and in some cases, the 69 

candidate diffusible molecules were suggested. Currently, the Turing model has been accepted as one 70 

of the fundamental mechanisms that govern morphogenesis[20, 21]. 71 

 72 

On the other hand, experimental researchers have pointed out problem that occur when the LALI 73 

models are used as the working hypothesis. For instance, LALI models can exhibit similar properties 74 

of pattern formation despite being based on different cellular and molecular functions[10]. Therefore, 75 

the simulation of a model rarely helps to identify the detailed molecular mechanism [22]. Even when 76 



a pattern-forming phenomenon is successfully reproduced by the simulation of an RD system, it 77 

does not guarantee the involvement of diffusion. This problem is quite serious because, in most 78 

experimental uses, the key molecular event that governs the phenomenon is unknown when the 79 

experimental project begins. 80 

 81 

It has also become clear that the pre-existing LALI models cannot represent some real biological 82 

phenomena. In the formation of skin pigmentation patterns in zebrafish, the key factors are cell 83 

migration and apoptosis induced by direct physical interaction of cell projections[23-25]. This is 84 

not the only case in which the key signals for pattern formation are transferred not by diffusion but 85 

by fine cell projections such as filopodia[26-28], which may be essentially different than signalling 86 

by diffusion. In diffusion, the concentration of the substance is highest at the position of the source 87 

cell and rapidly decreases depending on the distance from the source. Therefore, it is difficult to use 88 

diffusion to model the condition in which the functional level of the signal has a sharp peak at a 89 

location distant from the source (Figure 1). As each LALI model is restricted by its assumed 90 

signalling mechanism, it is difficult to adapt a model to an arbitrary stimulation-distance profile of a 91 

real system. In this report, I present a new version of the Turing model that complements the 92 

shortcomings of conventional models. 93 

 94 

 95 

Model concept and description 96 

 97 

In the modelling of systems that include non-local interactions, the integral function is useful. For 98 

example, in the case of a neuronal system, the change of firing rate n at position x is represented by 99 
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Here, w(x-x’) is the kernel function, which quantifies the effect of the neighbouring n(x’,t) on n(x,t) 101 

depending on the spatial distance. In this model system, the shape of the kernel determines how the 102 

system behaves. The Fourier transform (FT) of the kernel produces the dispersion relation, which 103 

shows the unstable (amplifying) wavelength. Importantly, this kernel method can be used to model 104 

the effect of long-range diffusion that results from a local interaction. Murray proposed that “this 105 

approach provides a useful unifying concept” [4]. The LALI condition can be considered the kernel 106 

shape that makes stable waves. Thus, one simple method to generalize the conventional Turing or 107 

LALI models would be to directly input an arbitrary kernel shape not based on the assumption of 108 

any concrete molecular or cellular events. Such a model can be called a kernel-based Turing model 109 

(KT model). 110 



 111 

As the KT model is not based on any specific behaviour of the molecules or cells, it is more abstract 112 

than the pre-existing mathematical models. However, it is practically useful because the shape of the 113 

interaction kernel can be easily measured by some simple experiment in some cases. For example, in 114 

the case of the pigmentation pattern in zebrafish, in which the mutual interactions between 115 

melanophores and xanthophores form the pattern [29], we ablated a group of xanthophores with a 116 

laser and observed the increase or decrease in melanophores in the neighbouring and distant regions. 117 

The data that can be obtained by this simple experiment is a activation-inhibition kernel in itself, and 118 

is sufficient to explain how the pattern is made [29]. Similar experiments could be performed in 119 

many different systems to obtain a kernel shape without any information about the signalling 120 

molecules.  121 

 122 

Consistent with the original Turing model and the models of Gierer and Meinhardt, KT model 123 

incorporates the concentration of substance u. u is synthesized depending on the function of cell-cell 124 

interaction S, and is destroyed at the constant rate deg, as follows.  125 

 126 

  

  
         

The concentration u can be replaced by some activity of the cell. In such cases, deg represents the 127 

decay rate of the state. 128 

 129 

The function Kernel is represented by the addition of two Gaussian functions, A(x) and I(x). A(x) and 130 

I(x) correspond to the activator and inhibitor in the Gierer-Meinhardt model, respectively (Figure 2). 131 

 132 

                    

 133 

If each cell sends the signal that stimulates or inhibits the synthesis of u, the sum of the stimulation 134 

received by a cell at position (p,q) is determined by: 135 

 136 

                                    
      

 137 

In each cell, u is synthesized at a rate of Stim. To avoid the synthesis of negative or unusually high 138 

levels of u, the lower and upper limits were set as: 139 

 140 



        

                                                        

                                    

                                               

  

 141 

The display of the simulation program that calculates the system described above is shown in Figure 142 

3. The field for pattern formation is a 200 × 200 array of cells. The maximum interaction distance is 143 

20 cells. The user can alter the parameters of the Gaussian functions using the user-friendly 144 

graphical user interface. The FT of the kernel is also indicated, which helps to deduce the resulting 145 

pattern. The software can be downloaded from the journal HP and Kondo’s HP. 146 

 147 

 148 

Results 149 

 150 

Pattern formation by classical LALI conditions 151 

To begin examining the properties that drive pattern formation in the KT model, the LALI condition 152 

was modelled. Specifically, the position of interaction peaks (distA and distB) were set at 0; the 153 

dispersion of A (dispA) was adjusted to be narrower, and that of I (dispI) wider; and the 154 

amplifications ampA and ampI were set to adjust the 2D integrated value of the kernel to 155 

approximately 0 (Figure 4A). I then examined whether the KT model could generate the same 156 

pattern as that generated by LALI models. 157 

 158 

Using these conditions, periodic patterns form autonomously and are similar to those seen in the 159 

simulation of RD and LALI models. The wavelength of the generated pattern corresponds to the 160 

peak positions in the FT of the kernel (Figure 4B, arrow). By slightly changing the values of ampA 161 

and ampB, three basic versions of the pattern (spots, stripes, and networks) emerge (Figure 4C). All 162 

of these properties showed that the pattern-forming properties of the KT model are compatible with 163 

that of LALI models. 164 

 165 

 166 

Pattern formation by variations on LALI conditions 167 

I next examined pattern formation when the peak position of I(x) was offset from 0 (Figure 5A). This 168 

condition also satisfies LALI, and a periodic pattern emerged as in the classical LALI model (Figure 169 

5B and C).  170 

 171 

Next, by exchanging the A(x) and I(x) functions, I established an inverted LALI condition that has 172 

not been tested in the previous study of LALI models (Figure 5D). This inverted LALI condition 173 



gave rise to a periodic pattern with a smaller wavelength (Figure 5F). The reason is clear from the 174 

FT graph; by setting the peak position larger than zero, the FT graph shows a wave pattern. Inversion 175 

of the kernel causes the emergence of a new peak at a different position (Figure 5B and E, arrows). 176 

We can conclude from this result that LALI is not a necessary condition for the formation of periodic 177 

patterns. 178 

 179 

Some biological examples seem to correspond to this case. In some aquarium fish subjected to 180 

selective breeding, the wavelength of the pigmentation pattern varies extensively among the breed 181 

(Figure 6A, B). To account for this phenomenon with the conventional RD model requires setting 182 

extremely different diffusion rates for each breed. However, because these fish belong to the same 183 

species, the mechanism that forms the pattern should be almost the same, and therefore this 184 

assumption is biologically quite unlikely. By assuming that the signal transduction has an effective 185 

peak at a distant region from the source cell, it is possible to generate patterns of extensively 186 

different wavelengths by making only slight changes to the parameter values. 187 

 188 

Nested pattern formation 189 

By setting the peak positions of both A(x) and I(x) distant from zero, the FT of the kernel shows a 190 

wave pattern and multiple peaks emerge. When a 2D pattern is calculated with these conditions, in 191 

most cases, the dominant wavelength dictates the pattern and thus a periodic pattern resembling that 192 

with a single wavelength emerges (data not shown). However, by tuning the parameters, it is 193 

possible to generate a nested pattern with two or more wavelengths (Figure 7A, B, and C). 194 

Interestingly, very similar nested patterns are found in some fish species (Figure 7D, E). 195 

 196 

Identification of the primary factor that determines the variety of 2D patterns 197 

The RD and other LALI models are able to generate a variety of 2D patterns, namely spots, stripes, 198 

and networks, and previous studies have examined the parameter sets that give rise to these patterns 199 

for each specific model. However, because each model is built on different assumptions of the 200 

behaviours of molecules and cells, little is known about the primal factor that controls the 2D 201 

pattern.  202 

 203 

I tested a number of different kernel shapes with the KT model, and in all cases, the determinant of 204 

the 2D shape of the waves was the integrated value of the 2D kernel. By setting the integrated value 205 

close to zero, stripe patterns emerge irrespective of the kernel shape, while spots always emerge at 206 

smaller integrated values and inverted spots (networks) emerge with larger integrated values (Figure 207 

8A, B, and C). This result persisted when rectangular waves, trigonometric functions, or polygonal 208 

lines were used as the kernel shape. This strongly suggests that the primal factor that determines the 209 



shape of the 2D wave pattern is the integrated value of the kernel function. 210 

  211 



Discussion 212 

 213 

Unlike the RD and other LALI models, the KT model does not assume any mechanisms of 214 

molecules or cells, but directly uses an input activation-inhibition kernel. Because of its abstract 215 

nature, the KT model cannot predict the detailed molecular or cellular processes involved in the 216 

pattern formation. However, as shown in this report, the kernel shape itself provides enough 217 

information to explain the formation of various stable patterns. Moreover, the simplicity of the KT 218 

model confers some significant advantages that complement the shortcomings of conventional 219 

mathematical models. 220 

 221 

Usage of the KT model in experimental studies 222 

Different LALI models that postulate different molecular or cellular mechanisms can sometimes 223 

form very similar patterns. Therefore, even if a biological pattern is reproduced by the simulation of 224 

a specific LALI model, it does not guarantee that the molecular mechanism anticipated in the model 225 

underlies the biological system. Even with recent advances in technology and experimental methods, 226 

it is still difficult to identify every part of a molecular network that is involved in formation of a 227 

biological pattern. Especially at the beginning of an experimental project, little molecular 228 

information is usually available. In most cases, therefore, it is quite difficult to construct a 229 

pattern-formation simulation on the basis of reasonable experimental data. These problems led 230 

Greene and Economou to question the efficacy of RD and LALI models in the experimental research 231 

of morphogenesis[22]. 232 

 233 

As the KT model is not based on any specific molecular mechanism, it likewise cannot be used to 234 

make molecular-level predictions. However, KT model simulations can be performed with a 235 

sufficient experimental basis because it is easier to detect the kernel shape. For example, the 236 

pigmentation pattern of zebrafish skin is generated by an array of black melanophores and 237 

xanthophores that mutually interact. Using laser ablation to kill the cells in a particular region, we 238 

measured the increase and decrease of cell density at nearby and distant regions [29]. The data 239 

obtained from this simple experiment is the kernel itself, which is sufficient to predict the 240 

development of 2D patterns. In that previous paper[29], we used the conventional RD model. 241 

However, it was later discovered that the signals are not transferred by diffusion but by the direct 242 

contact of cell projections. Because the condition of LALI is retained by both types of projections 243 

(long and short), the predictions made by the simulation were correct. However, using an RD model 244 

for a system that does not involve diffusion is theoretically contradictory. Using kernel-based 245 

simulation can avoid this problem. Kernel detection is also feasible in many other systems. Using 246 

light-gated channels or infrared light, for example, one can stimulate, inhibit, or kill cells located at 247 



an arbitrary region, and observe the subsequent changes in surrounding cells by live-cell imaging. 248 

Therefore, in many cases where the detailed molecular mechanism is unknown, using the KT model 249 

should still be safe and practical. 250 

 251 

Usage of the KT model in theoretical analysis 252 

In a simple RD model with two substances, the necessary conditions for stable pattern formation are 253 

analytically induced. However, the number of elements (molecules and cells) involved in real 254 

pattern-formation events usually far exceeds two. In such cases, the applicability of the LALI 255 

concept is uncertain. In fact, some recent computational studies reported that mathematical models 256 

of three substances were able to form stable periodic patterns using the reversed LALI condition [30] 257 

[31]. Therefore, the concept of LALI is likely not sufficient to analyse a realistic system with more 258 

than three factors. To identify more generalized conditions for the pattern formation, mathematical 259 

unification of the various patterning mechanisms may be required. As Murray suggested [4], the 260 

kernel concept may be useful for this unification. As shown in this report, the variety of 2D patterns 261 

generated by the KT model is wide enough to cover most known biological patterns. Patterns formed 262 

by the reversed LALI condition[30, 31] can also be reproduced by the KT model. Moreover, the 263 

simulation result of KT model(figure7) shows that it can generate some complex spatial patterns that 264 

is difficult to be made by conventional models. Nested patterns appear often on the animal skin and 265 

sea shells. To reproduce such patterns, conventional models needed to combine two sets of Turing 266 

systems[32] or to function a RD system twice with a time lag[33]. With the KT model, adjusting the 267 

two Gaussian functions is, however, enough to generate such patterns, and the reason why the nested 268 

patterns emerges is clear from the FT of the kernel shape. Therefore, if it is possible to translate the 269 

property of a given molecular network into a kernel shape, the behaviours of different models can be 270 

addressed in a unified method. 271 

 272 

According to the simulation results from the KT model (Figures 4, 5, and 6), the conditions of stable 273 

pattern formation are quite simple: the integrated value of the 2D kernel is near zero, and the FT of 274 

the kernel has upward peaks. Concerning to the variety of the 2D pattern, Gierer and Meinhardt 275 

suggested that the saturation of activator synthesis is the key to change the spots to stripe and 276 

network [3]. However, this suggestion was not tested with rigorous mathematical analysis. With the 277 

KT model, the type of 2D pattern generated (spots, stripes, or networks) depends almost entirely on 278 

the integrated value of the 2D kernel. Although more mathematically strict verification should be 279 

performed in future studies, these simple conditions would be useful to understand the principle of 280 

pattern formation in real systems. 281 

 282 

The properties of the KT model described above can complement the weaknesses identified in the 283 



pre-existing mechanistic models for autonomous pattern formation. I hope that the kernel-based 284 

method presented here will contribute to the progression of our understanding of biological pattern 285 

formation. 286 
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Simulation program and the parameter sets used in the study 296 

 297 

The simulation program was coded with Processing2.0 (Massachusetts Institute of Technology). 298 

The compiled program will be distributed from the journal HP and the institute HP of Kondo. 299 

The kernel function was defined as follows, where x is the distance between the cells: 300 

 301 

Kernel[x] = ActivatorKernel[x] + InhibitorKernel[x] 302 

ActivatorKernel[x] = ampA/sqrt(2*PI)*exp(-(sq((x-distA)/widthA)/2)) 303 

 InhibitorKernel[x] = ampI/sqrt(2*PI)*exp(-(sq((x-distI)/widthI)/2)) 304 

 305 

The six parameters (ampA, ampI, widthA, widthI, dispA, and dispI) that determine the shape of the 306 

kernel are changed by the control sliders. The FT of the kernel, 3D kernel shape, and integrated 307 

value of the 2D kernel are automatically calculated when the parameter values are changed. 308 

Pushing the “start-calculation” and “stop-calculation” buttons starts and stops the calculation, 309 

respectively. The “random-pattern” button gives a random value (0~1) to each cell. The 310 

“clear-the-field” button gives a value of 0 to each cell. Clicking the mouse on the calculation field 311 

gives a value of 0.5 to the cell at the position of the cursor. 312 

 313 

Parameter Settings 314 

 ampA ampI widthA widthI distA distI 2D 

integrat

ed 

Fig. 4C left 20.267 -2.133 1.817 5.835 0 0 -14.119 

Fig. 4C centre 21.971 -2.133 1.817 5.835 0 0 -0.017 

Fig. 4C right 250.67 -2.133 1.817 5.835 0 0 25.604 

        

Fig. 5 upper 22.4 -8 2.748 1.278 0 6.7 -0.398 

Fig. 5 lower -22.4 8 2.748 1.278 0 67 -0.398 

Fig. 6A 15.275 -11.733 1.082 0.886 4.4 7 -0.318 

Fig. 6B 12.656 -18.133 1.082 0.886 6.8 5.799 -0.413 

        

Fig. 7A 17.192 -13.333 1.18 1.18 8.3 10.7 0.2 

Fig. 7B 21.085 -19.733 0.739 0.935 10.3 8.7 -0.158 

Fig. 7C 16.869 -5.867 1.229 3.872 5.9 6.1 24.6 

        

Fig. 8A 20 14.287 -3.733 2.601 4.855 0 0 21.642 



Fig. 8A 10 13.61 -3.733 2.601 4.855 0 0 10.246 

Fig. 8A 0 13 -3.733 2.601 4.855 0 0 -0.11 

Fig. 8A -10 12.413 -3.733 2.601 4.855 0 0 -10.59 

Fig. 8A -20 11.827 -3.733 2.601 4.855 0 0 -20.001 

Fig. 8B 40 13.652 -7.466 0.886 5.835 8.9 0 39.96 

Fig. 8B 20 13.251 -7.466 0.886 5.835 8.9 0 20.076 

Fig. 8B 0 12.844 -7.466 0.886 5.835 8.9 0 -0.072 

Fig. 8B -20 12.443 -7.466 0.886 5.835 8.9 0 -19.956 

Fig. 8B -40 12.038 -7.466 0.886 5.835 8.9 0 -39.97 

Fig. 8C 40 14.182 -11.733 2.013 1.18 5.78 11.5 40.18 

Fig. 8C 20 13.908 -11.733 2.013 1.18 5.78 11.5 20.032 

Fig. 8C 0 13.634 -11.733 2.013 1.18 5.78 11.5 -0.022 

Fig. 8C -20 13.356 -11.733 2.013 1.18 5.78 11.5 -20.468 

Fig. 8C -40 13.089 -11.733 2.013 1.18 5.78 11.5 -40.034 

 315 
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Figure legends 400 

 401 

 402 

 403 

Figure 1: Interaction strength profiles depend on the method of signal transfer. A: In case of the 404 

signal by diffusion, the interaction strength is highest at the source(cell) position. B: If the signal 405 

molecule is released at the specific position of a cell projection, the peak of the interaction strength is 406 

distant from the source(cell) position. 407 
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 409 

 410 

Figure 2: Definition of the Kernel shape. Kernel function is determined by the addition of two 411 

Gaussian functions that can be modified by three parameters: amplitude(ampA and ampB), 412 

width(widthA and widthB) and distribution (distA and distB). 413 
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 416 

Figure 3: Display of the KT model simulator. User can change the parameters of two Gaussians 417 

with slider controller. The program automatically calculates and shows the 1D and 2D kernel, and 418 

the FT of the kernel. Resulting 2D pattern is shown in the big 2D window. 419 
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 422 

Figure 4: Pattern formation by LALI conditions. A: The graph of the kernel that s equivalent to 423 

the condition of LALI. Gaussian distribution for activator and inhibitor are represented by dark gray 424 

and light gray pattern. The kernel (addition of two Gaussians) is represented by the black line. B: 425 

Fourier transform of the kernel. Arrow indicates the peak position that represents the spatial 426 

frequency of emerging pattern. C: Generated patterns with slightly different parameter sets. (see 427 

Parameter Settings for details). Random pattern is used as the initial condition. 428 
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 431 

Figure 5: Pattern formation by non-LALI conditions. A, B and C: Stable pattern formation with 432 

LALI condition. D, E and F: Stable pattern formation with inverted LALI condition. See Parameter 433 

Settings for details. Random pattern is used as the initial condition. 434 
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 437 

Figure 6: Simulation of guppy pattern formation. A: When functional distance of the inhibitor is 438 

larger than that of the activator(p<q), the system generates a wide stripes. B: When functional 439 

distance of inhibitor is larger than that of activator(p>q), the system generates a drastically finer 440 

pattern. Artificial lines of guppy often show such difference in the wave length although they belong 441 

to a same species. See Parameter Settings for details. Random pattern is used as the initial condition. 442 

  443 



 444 

 445 

Figure 7: Nested patterns generated by the KT model and examples of nested patterns in the 446 

skin of fish. A, B and C: Three different types of the kernels and the resulting patterns. D: An 447 

artificial line of guppy. E: Japanese common eel. See Parameter Settings for details. Random pattern 448 

is used as the initial condition. 449 
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 452 

Figure 8: Relationship between the integrated values of the 2D kernel (noted above each 453 

pattern) and the generated pattern. Five resulting 2D patterns calculated with the integrated 454 

values (upper) are shown for the kernel A, B and C. With this small difference of the integrated 455 

values of 2D kernel, the graph of FT and Kernel(x) looks almost identical. FT: Fourier Transform of 456 

the kernel shapes. For the Gaussian parameters of each kernel, see the list of parameter settings. 457 
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