Books

[1] J. Suzuki, T. Nakano, and M. J. Moore, editors. Modeling, Methodologies and Tools for Molecular and Nano-scale Communications. Springer International Publishing, March 2017.
[2] Y. Okaie, T. Nakano, T. Hara, and S. Nishio. Target Detection and Tracking by Bionanosensor Networks. SpringerBriefs in Computer Science, Springer, September 2016.
[3] T. Nakano, A. Eckford, and T. Haraguchi. Molecular Communication. Cambridge University Press, September 2013.

Book Chapters

[1] T. Nakano. Biologically Inspired Networking and Sensing: Algorithms and Architectures, chapter A Networking Paradigm Inspired by Cell Communication Mechanisms, pages 1-10. IGI Publishing Group, August 2011.
[2] T. Nakano, M. Moore, A. Enomoto, and T. Suda. Molecular Communication Technology as a Biological ICT, volume 320, chapter Molecular Communication Technology as a Biological ICT, pages 49-86. Springer, Studies in Computational Intelligence, 2011.
[3] 中野 賢, Michael Moore, 榎本 章宏, and 須田 達也. 生命と情報通信, chapter 分子通信技術の研究動向 - バイオICTとしての分子通信, pages 59-95. オーム社, November 2009.
[4] 渡邊 俊, 中野 賢, 榎本 章宏, Michael Moore, and 須田 達也. 自己組織化ハンドブック, chapter 分子通信における自己組織化. エヌ・ティー・エス, November 2009.
[5] M. Moore, A. Enomoto, T. Suda, T. Nakano, and Y. Okaie. The Handbook of Computer Networks, volume 3, chapter Molecular Communication: New Paradigm for Communication among Nano-scale Biological Machines, pages 1034-1054. John Wiley & Sons Inc, November 2007.

Journal Papers

[1] C. Yao, Z. He, T. Nakano, and J. Shuai. Spiking patterns of a neuron model to stimulus: Rich dynamics and oxygen's role. Chaos, 28(083112), August 2018.
[2] T. Suda and T. Nakano. Molecular communication: A personal perspective. IEEE Transactions on Nanobioscience, 17(4):424 - 432, July 2018.
[3] P. He, T. Nakano, P. Lio', Y. Mao, Q. Liu, and K. Yang. Stochastic channel switching of frequency-encoded signals in molecular communication networks. IEEE Communications Letters, 22(2):332 - 335, February 2018.
[4] S. Iwasaki and T. Nakano. Graph-based modeling of mobile molecular communication systems. IEEE Communications Letters, 22(2):376 - 379, February 2018.
[5] Y. Chen, S. Shi, X. Yao, and T. Nakano. Touchable computing: Computing-inspired bio-detection. IEEE Transactions on Nanobioscience, 16(8):810 - 821, December 2017.
[6] T. Nakano. Molecular communication: A 10 year retrospective. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 3(2):71 - 78, June 2017.
[7] T. Nakano and T. Suda. Molecular communication using dynamic properties of oscillating and propagating patterns in concentration of information molecules. IEEE Transactions on Communications, 65(8):3386 - 3398, May 2017.
[8] S. Iwasaki, J. Yang, and T. Nakano. A mathematical model of non-diffusion-based mobile molecular communication networks. IEEE Communications Letters, March 2017.
[9] T. Furubayashi, Y. Sakatani, T. Nakano, A. Eckford, and N. Ichihashi. Design and wet-laboratory implementation of reliable end-to-end molecular communication. Springer Wireless Networks, January 2017.
[10] T. Nakano, Y. Okaie, S. Kobayashi, T. Koujin, C.-H. Chan, Y.-H. Hsu, T. Obuchi, T. Hara, Y. Hiraoka, and T. Haraguchi. Performance evaluation of leader-follower-based mobile molecular communication networks for target detection applications. IEEE Transactions on Communications, 65(2):636-676, November 2016.
[11] Y. Chen, T. Nakano, P. Kosmas, C. Yuen, A. Vasilakos, and M. Asvial. Green touchable nanorobotic sensor networks. IEEE Communications Magazine, 54(11):136-142, November 2016.
[12] T. Furubayashi, T. Nakano, A. Eckford, Y. Okaie, and T. Yomo. Packet fragmentation and reassembly in molecular communication. IEEE Transactions on Nanobioscience, 15(3):284-288, April 2016.
[13] K. Hosoda, S. Tsuda, K. Kadowaki, Y. Nakamura, T. Nakanoa, and K. Ishii. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems. Biosystems, 140:28-34, February 2016.
[14] L. Felicetti, M. Femminella, G. Reali, T. Nakano, and A. V. Vasilakos. Tcp-like molecular communications. IEEE Journal on Selected Areas in Communications (JSAC), 32(12):2354-2367, December 2014.
[15] T. Nakano, S. Kobayashi, T. Suda, Y. Okaie, Y. Hiraoka, and T. Haraguchi. Externally controllable molecular communication. IEEE Journal on Selected Areas in Communications (JSAC), 32(12):2417-2431, December 2014.
[16] Y. Okaie, T. Nakano, T. Hara, K. Hosoda, Y. Hiraoka, and S. Nishio. Cooperative target tracking by a mobile bionanosensor network. IEEE Transactions on Nanobioscience, 13(3):267-277, September 2014.
[17] T. Nakano, T. Suda, Y. Okaie, M. J. Moore, and A. V. Vasilakos. Molecular communication among biological nanomachines: A layered architecture and research issues. IEEE Transactions on Nanobioscience, 13(3):169-197, September 2014.
[18] Y. Okaie, T. Nakano, T. Hara, and S. Nishio. Autonomous mobile bionanosensor networks for target tracking: A two-dimensional model. Nano Communication Networks, 5(3):63-71, September 2014.
[19] M. Moore, T. Nakano, and Y. Okaie. Diffusion-based multiple access by nano-transmitters to a micro-receiver. IEEE Communications Letters, 18(3):385-388, March 2014.
[20] Y. Okaie, T. Nakano, T. Hara, and S. Nishio. Distributing nanomachines for minimizing mean residence time of molecular signals in bionanosensor networks. IEEE Sensors Journal, 14(1):218-227, January 2014.
[21] T. Nakano, Y. Okaie, and A. T. Vasilakos. Transmission rate control for molecular communication among biological nanomachines. IEEE Journal on Selected Areas in Communications (JSAC), 31(12):835-846, December 2013.
[22] M. Moore and T. Nakano. Oscillation and synchronization of molecular machines by diffusion of inhibitory molecules. IEEE Transactions on Nanotechnology, 12(4):601-608, July 2013.
[23] M. Moore, T. Nakano, A. Enomoto, and T. Suda. Measuring distance from single spike feedback signals in molecular communication. IEEE Transactions on Signal Processing, 60(7):3576-3587, July 2012.
[24] T. Nakano, Y. Okaie, and J. Q. Liu. Channel model and capacity analysis of molecular communication with brownian motion. IEEE Communications Letters, 16(6):797-800, June 2012.
[25] T. Nakano, M. Moore, F. Wei, A. T. Vasilakos, and J. W. Shuai. Molecular communication and networking: Opportunities and challenges. IEEE Transactions on NanoBioscience, 11(2):135-148, June 2012.
[26] J. Q. Liu and T. Nakano. Principles and methods for nanomechatronics: Signaling, structure, and functions toward nanorobots. IEEE Transactions on Systems, Man, and Cybernetics: Part C, 42(3):357-366, May 2012.
[27] T. Nakano. Biologically inspired network systems: A review and future prospects. IEEE Transactions on Systems, Man, and Cybernetics: Part C, 41(4):630-643, September 2011.
[28] M. Moore and T. Nakano. Addressing by beacon distances using molecular communication. Nano Communication Networks, 2(2-3):161-173, June-September 2011.
[29] T. Nakano and M. Moore. Molecular communication paradigm overview. Journal of Next Generation Information Technology, 2(1):9-16, February 2011.
[30] T. Nakano and M. Moore. In-sequence molecule delivery over an aqueous medium. Nano Communication Networks, 1(3):181-188, September 2010.
[31] T. Nakano and J. Q. Liu. Design and analysis of molecular relay channels: An information theoretic approach. IEEE Transactions on NanoBioscience, 9(3):213-221, September 2010.
[32] T. Nakano, J. W. Shuai, T. Koujin, T. Suda, Y. Hiraoka, and T. Haraguchi. Biological excitable media with non-excitable cells and calcium signaling. Nano Communication Networks, 1(1):43-49, March 2010.
[33] T. Nakano, T. Koujin, T. Suda, Y. Hiraoka, and T. Haraguchi. A locally induced increase in intracellular ca2+ propagates cell-to-cell in the presence of plasma membrane atpase inhibitors in non-excitable cells. FEBS Letters, 583(22):3593-3599, November 2009.
[34] T. Nakano, T. Suda, T. Koujin, T. Haraguchi, and Y. Hiraoka. Molecular communication through gap junction channels. Springer Transactions on Computational Systems Biology X, 5410:81-99, 2008.

Conference/Workshop Papers

[1] H. Zhai, L. Yang, T. Nakano, Q. Liu, and K. Yang. Bio-inspired design and implementation of mobile molecular communication systems at the macroscale. In IEEE Global Communications Conference (IEEE Globecom 2018), 6 pages, UAE, December 2018.
[2] S. Ishiyama, T. Nakano, Y. Okaie, and T. Hara. Epidemic information dissemination in mobile molecular communication systems. In IEEE Global Communications Conference (IEEE Globecom 2018), 7 pages, UAE, December 2018.
[3] T. Nakano and T. Suda. Modeling and simulations of bio-nanomachines for spatiotemporal pattern formation. In 5th ACM/IEEE International Conference on Nanoscale Computing and Communication (ACM/IEEE NanoCom 2018), 6 pages, Iceland, September 2018.
[4] T. Suda and T. Nakano. Molecular communication as a biological system. In 2018 International Workshop on Molecular, Biological and Multiscale Communications (2018 IEEE SECON Workshop), 4 pages, Hong Kong, June 2018.
[5] Y. Chen, Y. Zhou, R. Murch, and T. Nakano. Communication-inspired model of epidemic spreading and mitigation. In 2018 International Workshop on Molecular, Biological and Multiscale Communications (2018 IEEE SECON Workshop), 4 pages, Hong Kong, June 2018.
[6] K. Furuhashi, J. Mitzman, J. Suzuki, T. Nakano, Y. Okaie, and H. Fukuda. Impacts of sw-arq on the latency and reliability of diffusive, in-sequence molecular communication. In 2018 International Workshop on Molecular, Biological and Multiscale Communications (2018 IEEE SECON Workshop), 4 pages, Hong Kong, June 2018.
[7] H. Egashira, J. Suzuki, T. Koike, T. Nakano, H. Fukuda, and P. Orlik. Molecular fountain: A robustness enhancement framework for diffusive molecular communication. In 2017 IEEE Global Communications Conference (IEEE GLOBECOM 2017), 7 pages, Singapore, December 2017.
[8] Y. Okaie, T. Nakano, T. Obuchi, and S. Ishiyama. Molecule gradient formation by mobile bio-nanomachines. In IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2017), 5 pages, China, November 2017.
[9] H. Zhai, T. Nakano, A. V. Vasilakos, K. Yang, and Q. Liu. Increase detection algorithm for concentration-encoded diffusion-based molecular communication. In 4th ACM International Conference on Nanoscale Computing and Communication (ACM NanoCom 2017), USA, September 2017.
[10] Y. Okaie, T. Nakano, T. Obuchi, and T. Hara. Trail network formation by non-diffusive mobile molecular communication networks. In 18th IEEE International workshop on Signal Processing Advances in Wireless Communications (IEEE SPAWC2017), Sapporo, July 2017.
[11] Y. Chen, S. Shi, X. Yao, T. Nakano, and P. Kosmas. Touchable computation: Computing-inspired bio-detection. In 18th IEEE International workshop on Signal Processing Advances in Wireless Communications (IEEE SPAWC2017), Sapporo, July 2017.
[12] H. Egashira, J. Suzuki, J. Mitzman, T. Nakano, and H. Fukuda. Robust directional-diffusive hybrid molecular communication with parity-check erasure coding. In Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS 2017), 8 pages, Otsu, June 2017.
[13] H. Egashira, J. Suzuki, J. S. Mitzman, T. Nakano, and H. Fukuda. Impacts of erasure coding on robustness against molecular packet losses in aqueous, collisional environments. In 10th EAI International Conference on Bio-inspired Information and Communications Technologies (BICT 2017), 7 pages, USA, March 2017.
[14] J. Yang, S. Iwasaki, A. O. Abraham, J. Lorenzo, T. Obuchi, and T. Nakano. Performance optimization of self-organizing bioparticles for multi-target detection and gravitation problems. In 10th EAI International Conference on Bio-inspired Information and Communications Technologies (BICT 2017), 5 pages, USA, March 2017.
[15] Y. Okaie, T. Nakano, and T. Hara. Epidemic information dissemination in mobile molecular communication networks for target detection applications. In 10th EAI International Conference on Bio-inspired Information and Communications Technologies (BICT 2017), 4 pages, USA, March 2017.
[16] P. He, T. Nakano, Y. Mao, Q. Liu, and K. Yang. Channel switching in molecular communication networks through calcium signaling. In IEEE Wireless Communications and Networking Conference 2017 (IEEE WCNC 2017), 7 pages, USA, March 2017.
[17] S. Iwasaki, J. Yang, A. O. Abraham, J. Lorenzo, T. Obuchi, and T. Nakano. Modeling multi-target detection and gravitation by intelligent self-organizing bioparticles. In IEEE Global Communications Conference (GLOBECOM 2016), 6 pages, USA, December 2016.
[18] J. Namba, T. Nakano, Y. Okaie, and T. Hara. Epidemic information dissemination for molecular communication among mobile bio-nanomachines. In 3rd ACM International Conference on Nanoscale Computing and Communication (ACM NANOCOM 2016), 2 pages, USA, September 2016.
[19] A. W. Eckford, T. Furubayashi, and T. Nakano. Rna as a nanoscale data transmission medium: Error analysis. In 16th International Conference on Nanotechnology (IEEE NANO 2016), 4 pages, Sendai, August 2016.
[20] Y. Okaie, T. Nakano, T. Obuchi, and T. Hara. Research challenges in bionanosensor networks. In 2016 IEEE International Conference on Computer Communications Workshops (IEEE INFOCOM WKSHPS), 2 pages, USA, April 2016.
[21] T. Obuchi, T. Nakano, Y. Okaie, and T. Hara. Non-diffusion-based molecular communication using adhesive molecules. In 2016 IEICE General Conference, pages S50-51, Fukuoka, March 2016.
[22] T. Nakano, S. Kobayashi, T. Koujin, C.-H. Chan, Y.-H. Hsu, Y. Okaie, T. Obuchi, T. Hara, Y. Hiraoka, and T. Haraguchi. Leader-follower based target detection model for mobile molecular communication networks. In 17th IEEE International workshop on Signal Processing Advances in Wireless Communications, 5 pages, UK, 2016.
[23] T. Furubayashi, T. Nakano, A. Eckford, N. Ichihashi, and T. Yomo. Packet replication and noise in reliable end-to-end molecular communication. In 9th EAI International Conference on Bio-inspired Information and Communications Technologies, pages 165-166, USA, December 2015.
[24] Y. Okaie, T. Nakano, T. Obuchi, T. Hara, and S. Nisiho. Mobility and controllability of bio-nanomachines. In 9th EAI International Conference on Bio-inspired Information and Communications Technologies, pages 163-165, USA, December 2015.
[25] T. Furubayashi, T. Nakano, A. Eckford, and T. Yomo. Reliable end-to-end molecular communication with packet replication and retransmission. In IEEE Global Communications Conference (GLOBECOM 2015), 6 pages, USA, December 2015.
[26] T. Nakano, T. Suda, and M. Moore. Molecular communication through biological pattern formation. In IEEE Global Communications Conference (GLOBECOM 2015), 7 pages, USA, December 2015.
[27] T. Obuchi, Y. Okaie, T. Nakano, T. Hara, and S. Nishio. Inbody mobile bionanosensor networks through non-diffusion-based molecular communication. In IEEE International Conference on Communications (ICC 2015), pages 2681-2687, UK, June 2015.
[28] Y. Okaie, T. Nakano, T. Obuchi, T. Hara, and S. Nishio. Bacterium-based mobile bionanosensor networks for target tracking: A biologically realistic model. In 8th International Conference on Bio-inspired Information and Communications Technologies (BICT 2014), 3 pages, USA, December 2014.
[29] T. Nakano, T. Hara, Y. Okaie, T. Obuchi, and S. Nishio. Mobile bionanosensor networks through molecular communication. In Asia-Pacific Microwave Conference (APMC 2014), pages 525-527, Sendai, November 2014.
[30] Y. Okaie, T. Nakano, T. Hara, K. Hosoda, Y. Hiraoka, and S. Nishio. Modeling and performance evaluation of mobile bionanosensor networks for target tracking. In IEEE International Conference on Communications (ICC 2014), pages 3980-3985, Australia, June 2014.
[31] T. Nakano, S. Kobayashi, T. Suda, Y. Okaie, Y. Hiraoka, and T. Haraguchi. Externally controllable molecular communication systems for pattern formation. In 1st ACM International Conference on Nanoscale Computing and Communication (NANOCOM), number 14, USA, May 2014.
[32] T. Nakano, K. Hosoda, Y. Nakamura, and K. Ishii. A biologically-inspired intrabody nanonetwork: Design considerations. In 8th International Conference on Body Area Networks (BODYNETS), pages 484-487, USA, September 2013.
[33] Y. Okaie, T. Nakano, T. Hara, and S. Nishio. Single target tracking in bionanosensor networks: Preliminary simulation results. In 8th International Conference on Body Area Networks (BODYNETS), pages 476-477, USA, September 2013.
[34] M. Moore and T. Nakano. Addressing by concentrations of receptor saturation in bacterial communication. In 8th International Conference on Body Area Networks (BODYNETS), pages 472-475, USA, September 2013.
[35] Y. Okaie, T. Nakano, M. J. Moore, and J. Q. Liu. Information transmission through a multiple access molecular communication channel. In IEEE Conference on Communications (ICC), pages 4030-4034, Hungary, June 2013.
[36] T. Nakano, M. J. Moore, Y. Okaie, A. Enomoto, and T. Suda. Cooperative drug delivery through molecular communication among biological nanomachines. In IEEE Conference on Communications (ICC) Workshop, International Workshop on Molecular and Nanoscale Communications (MoNaCom), pages 809-812, Hungary, June 2013.
[37] M. J. Moore and T. Nakano. Multiplexing over molecular communication channels from nanomachines to a micro-scale sensor device. In IEEE Global Communications Conference (GLOBECOM), pages 4302-4307, USA, December 2012.
[38] T. Nakano, M. J. Moore, Y. Okaie, A. Enomoto, and T. Suda. Swarming biological nanomachines through molecular communication for targeted drug delivery. In 6th International Conference on Soft Computing and Intelligent Systems/The 13th International Symposium on Advanced Intelligent Systems (SCIS-ISIS 2012), pages 2317-2320, Kobe, November 2012.
[39] M. Moore and T. Nakano. Comparing transmission, propagation, and receiving options for nanomachines to measure distance by molecular communication. In IEEE International Conference on Communications (ICC) Workshop on Molecular and Nano-scale Communications (MoNaCom 2012), Canada, September 2012.
[40] Y. Okaie and T. Nakano. Nanomachine placement strategies for detecting brownian molecules in nanonetworks. In 2012 IEEE Wireless Communications and Networking Conference (WCNC 2012), pages 1777-1781, France, April 2012.
[41] T. Nakano, Y. Okaie, and A. T. Vasilakos. Throughput and efficiency of molecular communication between nanomachines. In IEEE Wireless Communications and Networking Conference (WCNC 2012), pages 709-713, France, April 2012.
[42] A. Enomoto, M. Moore, T. Suda, and T. Nakano. Stochastic cargo transportation by molecular motors in molecular communication. In 2012 IEEE Wireless Communications and Networking Conference (WCNC 2012), pages 709-713, France, 2012 2012.
[43] M. Moore and T. Nakano. Synchronization of inhibitory molecular spike oscillators. In 6th International ICST Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2011), UK, December 2011.
[44] Y. Okaie, M. Moore, and T. Nakano. Propagation delay of brownian molecules in nano-biosensor networks. In 6th International ICST Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2011), UK, December 2011.
[45] M. Moore and T. Nakano. Addressing by beacon coordinates using molecular communication. In IEEE INFOCOM (International Conference on Computer Communications) Workshop on Molecular and Nano-scale Communications (MoNaCom 2011), pages 455-460, China, April 2011.
[46] T. Nakano and J. Shuai. Repeater design and modeling for molecular communication networks. In 5th International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS), USA, December 2010.
[47] J. Q. Liu and T. Nakano. A filter for the cooperative kinase network of budding yeast saccharomyces cerevisiae. In 5th International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS), USA, December 2010.
[48] M. Moore, T. Nakano, A. Enomoto, and T. Suda. Measuring distance with molecular communication feedback protocols. In 5th International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS), USA, December 2010.
[49] T. Nakano, S. Kobayashi, and T. Haraguchi. Interfacing living cells via molecular communication. In 5th International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS), USA, December 2010.
[50] T. Nakano. Biological computing based on living cells and cell communication. In 13th International Conference on Network-Based Information Systems (NBiS), pages 42-47, Takayama, September 2010.
[51] T. Nakano and T. Suda. Biological cell communications technology: An architecture overview. In 6th International Conference on Networked Computing and Advanced Information Management (NCM), pages 488-490, Korea, August 2010.
[52] T. Nakano and J. Q. Liu. Information transfer through calcium signaling. In 4th International ICST Conference on Nano-Networks (Nano-Net 2009), pages 29-33, Switzerland, October 2009.
[53] J. Q. Liu and T. Nakano. Quantitative analysis of the feedback of the robust signaling pathway network of myosin v molecular motors on glur1 of ampa in neurons: A networking approach for controlling nanobiomachines. In 4th International ICST Conference on Nano-Networks (Nano-Net 2009), pages 34-38, Switzerland, October 2009.
[54] F. Walsh, S. Balasubramaniam, D. Botvich, T. Nakano, and T. Suda. Simulation framework for communication protocols of molecular communication systems. In 3rd International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2008), Hyogo, November 2008.
[55] J. Q. Liu and T. Nakano. Biomolecular computation based on cell communication. In 3rd International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2008), Hyogo, November 2008.
[56] F. Walsh, S. Balasubramaniam, D. Botvich, T. Suda, T. Nakano, S. F. Bush, and M. O Foghlu. Hybrid dna and enzyme based computing for address encoding, link switching and error correction in molecular communication. In Third International Conference on Nano-Networks (Nano-Net 2008), pages 28-38, USA, September 2008.
[57] T. Nakano, Y. H. Hsu, W. C. Tang, T. Suda, D. Lin, T. Koujin, T. Haraguchi, and Y. Hiraoka. Microplatform for intercellular communication. In Third Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS 2008), pages 476-479, China, January 2008.
[58] J. Q. Liu and T. Nakano. An information theoretic model of molecular communication media based on cellular signaling. In 2nd International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2007), pages 316-321, Hungary, December 2007.
[59] T. Nakano, T. Suda, T. Koujin, T. Haraguchi, and Y. Hiraoka. Molecular communication through gap junction channels: System design, experiments and modeling. In 2nd International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2007), pages 139-146, Hungary, December 2007.
[60] M. Moore, A. Enomoto, T. Nakano, Y. Okaie, and T. Suda. Interfacing nanomachines through molecular communication. In Workshop on eNetworks Cyberengineering: Infrastructures for Cyber-Physical Ecosystems, pages 18-23, Canada, October 2007.
[61] A. Enomoto, M. Moore, T. Nakano, R. Egashira, T. Suda, H. Kojima, H. Sakibara, and K. Oiwa. A molecular communication system using a network of cytoskeletal filaments. In 2006 NSTI Nanotechnology Conference, volume 1, pages 725-728, USA, May 2006.
[62] M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, and K. Oiwa. A design of a molecular communication system for nanomachines using molecular motors. In 1st International Workshop on Pervasive and Ubiquitous Health Care (UbiCare 2006), pages 554-559, Italy, March 2006.
[63] T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, and K. Arima. Molecular communication for nanomachines using intercellular calcium signaling. In IEEE Conference on Nanotechnology (IEEE-NANO 2005), pages 632-635, Nagoya, July 2005.
[64] T. Suda, M. Moore, T. Nakano, R. Egashira, and A. Enomoto. Exploratory research on molecular communication between nanomachines. In Late-breaking Papers (CD-ROM), Genetic and Evolutionary Computation Conference 2005 (GECCO 2005), USA, June 2005.
[65] S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, and T. Nakano. Molecular communication. In 2005 NSTI Nanotechnology Conference, volume 3, pages 392-395, USA, May 2005.