Graduate School of Frontier Biosciences, Osaka University


Cellular and Molecular Neurobiology Group


  1. Zhong Y, Takemoto, M, Fukuda T, Hattori Y, Murakami F, Nakajima D, Nakayama M, Yamamoto N (2004) Identification of the genes that are expressed in the upper layers of the neocortex. Cerebral Cortex. in press.

  2. Hanamura K, Harada A, Katoh-Semba R, Murakami F, Yamamoto N (2004) BDNF and NT-3 promote thalamocortical axon growth with distinct substrate and temporal dependency. Eur J Neurosci in press.

  3. Takemoto N, Fukuda T, Murakami F, Tanaka H, Yamamoto N (2002) Role of ephrin-B3 in the formation of region- and lamina-specific thalamocortical projections. Eur J Neurosci 16:1168-72.

  4. Yamamoto N (2002) Cellular and molecular basis of axonal targeting in the formation of lamina-specific thalamocortical projections. Neurosci Res 42. 167-173.

  5. Yamamoto N, Inui K, Matsuyama Y, Harada A, Hanamura K, Murakami F Ruthazer ES, Rutishauser U, Seki T (2000) Inhibitory mechanism by polysialic acid for lamina-specific branch formation of thalamocortical axons. J Neurosci 20: 9145-9151.

  6. Yamada K, Yamamoto N, Toyama K (2000) Development of NMDA and non-NMDA receptor-mediated excitatory synaptic transmission in geniculocortical and corticocortical connections studied by organotypic coculture preparations. Eur J Neurosci 12: 3854-3862.

  7. Yamamoto N, Matsuyama Y, Harada A, Inui K, Murakami F, Hanamura K (2000) Characterization of factors regulating lamina-specific growth of thalamocortical axon. J Neurobiol 42: 56-68.

  8. Yamamoto N, Higashi S, Toyama K (1997) Stop and Branch behaviors of geniculocortical axons: A time-lapse study in organotypic cocultures. J Neurosci 17: 3653-3663.

  9. Yamamoto N, Toyama K (1995) Repulsive and attractive mechanisms for the formation of corticofugal projections. NeuroRep 6: 1517-1520.

  10. Kurotani T, Yamamoto N, Toyama K (1993) Development of neural connections between visual cortex and transplanted lateral geniculate nucleus in rats. Develop. Brain Res 71: 151-168.

  11. Yamamoto N, Yamada K, Kurotani T, Toyama K (1992) Laminar specificity of extrinsic cortical connections studied in coculture preparations. Neuron 9: 217-228.

  12. Yamamoto N, Kurotani T, Toyama K (1989) Neural connections between the lateral geniculate nucleus and visual cortex in vitro. Science 245: 192-194.

  13. Hamasaki T, Komatsu Y, Yamamoto N, Nakajima S, Hirakawa K, Toyama K (1987) Electrophysiological study of synaptic connections between a transplanted lateral geniculate nucleus and the visual cortex of the host rat. Brain Res 422: 172-177.

Oda Group -- Original papers (English)

  1. Nakayama, H. and Oda, Y. Common inputs and different excitability of segmentally homologous reticulospinal neurons in hindbrain. J. Neurosci. 24: 3199-3209, 2004.

  2. Takahashi, M., Narushima, M. and Oda, Y. In vivo imaging of functional inhibitory networks on the Mauthner cell of larval zebrafish. J. Neurosci. 22: 3929-3939, 2002

  3. Komatsu, H., Murayama, Y., Iwaki, T., Tsukamoto, I. Ogli, K. and Oda, Y. Effects of enflurane on the long-term potentiation in the hippocampus. Prog. Anesth. Mech., 6: 515-518, 2000.

  4. Oda, Y., Kawasaki, K., Morita, M., Korn, H. and Matsui, H. Inhibitory long-term potentiation underlies auditory conditioning of goldfish escape behaviour. Nature 394: 182-185, 1998

  5. Oda, Y., Charpier, S., Murayama, Y., Suma, C. and Korn, H. Long-term potentiation of glycinergic inhibitory synaptic transmission. J. Neurophysiol. 74: 1056-1074, 1995.

  6. Ito, M. and Oda, Y. Electrophysiological evidence for formation of new cortico-rubral synapses associated with classical conditioning in the cat. Exp. Brain Res. 99: 277-288, 1994.

  7. Korn, H., Oda, Y. and Faber, D.S. Long-term potentiation of inhibitory circuits and synapses in the CNS. Proc. Natl. Acad. Sci. USA 89: 440-443, 1992.

  8. Oda, Y. and Tsukuda, E. Modulatory effects of noradrenaline on red nucleus neurons in vitro. Biomed. Res. 10, Suppl. 2: 163-169, 1989.

  9. Oda, Y., Ito, M., Kishida, H. and Tsukahara, N. Formation of new cortico-rubral synapses as a possible mechanism for classical conditioning mediated by the red nucleus in cat. J. Physiol. (Paris) 83: 207-216, 1988-1989.

  10. Murakami, F., Oda, Y. and Tsukahara, N. Synaptic plasticity in the red nucleus and learning. Behav. Brain Res. 28: 175-179, 1988.

  11. Murakami, F., Higashi, S., Katsumaru, H. and Oda, Y. Formation of new functional synapses as a mechanism for classical conditioning in the cat. Brain Res. 437: 379-382, 1987.

  12. Murakami, F., Etoh, M., Kawato, M., Oda, Y. and Tsukahara, N. Synaptic currents at interpositorubral and corticorubral excitatory synapses measured by a new iterative single-electrode voltage-clamp method. Neurosci. Res. 3: 590-605, 1986.

  13. Kawato, M., Etoh, M., Oda, Y. and Tsukahara, N. A new algorithm for voltage clamp by iteration: A learning control of nonlinear neuronal system. Biol. Cybern. 33: 1-10, 1985.

  14. Tsukahara, N., Bando, T., Murakami, F. and Oda, Y. Properties of cerebello-precerebellar reverberating circuits. Brain Res. 274: 249-259, 1983.

  15. Fujito, Y., Tsukahara, N., Oda, Y. and Yoshida, M. Formation of functional synapses in the adult cat red nucleus from the cerebrum following cross-innervation of forelimb flexor and extensor nerves. II. Analysis of newly appeared synaptic potentials. Exp. Brain Res. 45: 13-18, 1982.

  16. Tsukahara, N., Fujito, Y., Oda, Y. and Maeda, J. Formation of functional synapses in the adult cat red nucleus from the cerebrum following cross-innervation of forelimb flexor and extensor nerves. I. Appearance of new synaptic potentials. Exp. Brain Res. 45: 1-12, 1982.

  17. Oda, Y., Kuwa, K., Miyasaka, S. and Tsukahara, N. Modification of rubral unit activities during classical conditioning in the cat. Proc. Jap. Acad. 57, Ser. B: 402-405, 1981.

  18. Tsukahara, N. and Oda, Y. Appearance of new synaptic potentials at cortico-rubral synapses after the establishment of classical conditioning. Proc. Jap. Acad. 57, Ser. B: 398-401, 1981.

  19. Udo, M., Matsukawa, K., Kamei, H., Minoda, K. and Oda, Y. Simple and complex activities of Purkinje cells during locomotion in the cerebellar vermal zones of decerebrate cats. Exp. Brain Res. 41: 292-300, 1981.

  20. Tsukahara, N., Oda, Y. and Notsu, T. Classical conditioning mediated by the red nucleus in the cat. J. Neurosci. 1: 72-79, 1981.

  21. Udo, M., Matsukawa, K., Kamei, H. and Oda, Y. Cerebellar control of locomotion: Effect of cooling cerebellar intermediate cortex in high decerebrate and awake walking cats. J. Neurophysiol. 44: 119-134, 1980.

  22. Tsukahara, N., Oda, Y. and Notsu, T. Associative conditioning mediated by the red nucleus in the cat. Proc. Jap. Acad. 55: Ser. B, 537-541, 1979.

  23. Fujito, F., Oda, Y., Maeda, J. and Tsukahara, N. Synaptic inputs of the red nucleus in the cat. A further study. Proc. Jap. Acad. 54: Ser. B, 65-68, 1978.

Oda Group -- Reviews and Book chapters (English)

  1. Charpier, S., Oda, Y. and Korn, H. Long-term enhancement of inhibitory synaptic transmission. In: Long-Term Potentiation: A debate of current issues, ed. M. Baudry and J. Davis, MIT Press, London Vol.2, pp.151-168, 1994.

  2. Murakami, F., Oda, Y. and Tsukahara, N. Sprouting as a basis for classical conditioning in the cat. In: Cellular Mechanisms of Conditioning and Behavioral Plasticity ed. CWoody, D. L. Alkon and J. L. McGaugh, Plenum, pp.21-26, 1988.

  3. Oda, Y. Modification of the rubral activities during classical conditioning of the cat. In: Neuronal Growth and Plasticity, ed. M. Kuno, Japan Scientific Press,Tokyo and VNU Science Press BV, Utrecht, The Netherlands, pp.199-217, 1985.

  4. Udo, M., Oda, Y., Tanaka, K. and Horikawa, J. Cerebellar control of locomotion investigated in cats: Discharges from Deiters' neurones, EMG and limb movements during local cooling of the cerebellar cortex. Progress in Brain Research, Vol. 44, Understanding the Stretch Reflex, ed. S. Homma, Amsterdam, Elsevier, pp.445-449, 1976.